Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Heat transfer analysis of piston cooling using nanofluids in the gallery

Attaining proper temperature in engines is always a challenge for engine manufacturers primarily because temperature has a significant role in engine performance and emissions. With the development of new technology in the field of nanofluids, it seems very promising to use nanofluids as the coolant in internal combustion engines. In this reported work, Cu and diamond nanoparticles with diameters of 50 nm were dispersed in conventional engine oil to create nanofluids (volume fractions of 1, 2 and 3%) to serve as the cooling medium for a piston-cooling gallery. The piston thermal loading calculations were carried out based on numerical hydrodynamic simulation through a liquid–solid-coupled thermodynamic method. The obtained results indicate that using different volume fractions of nanofluids can effectively reduce the thermal loading of the piston.

References

    1. 1)
    2. 2)
      • 9. Wang, P., Lv, J., Bai, M., Wang, Y., Hu, C., Zhang, L.: ‘Numerical simulation on the flow and heat transfer process of nanofluids inside a piston cooling gallery, numerical heat transfer’, Int. J. Comput. Methodol. A, Appl., 2014, 65, pp. 378400.
    3. 3)
      • 17. Hongyuan, Z., Zhaoxun, L., Jian, X.: ‘Temperature field analysis to gasoline engine piston and structure optimization’, J. Theor. Appl. Inf. Technol., 2013, 48, p. 904.
    4. 4)
    5. 5)
      • 2. Pan, J., Nigro, R., Matsuo, E.: ‘3-D modeling of heat transfer in diesel engine piston cooling galleries’. Proc. SAE World Congress, Detroit, MI, USA, 2005, 1, p. 1644.
    6. 6)
      • 8. Zhang Weizheng, C.Y., Yanpeng, Y., Zhenyu, Y.: ‘Simulation study of flow and heat transfer in oscillating cooling pistons based on CFD’, Trans. CSICE, 2010, 28, pp. 7578.
    7. 7)
    8. 8)
      • 4. Choi, S.U.S., Eastman, J.A.: ‘Enhancing thermal conductivity of fluids nanoparticles’, Dev. Appl., Non-Newtonian Flows, 1995, 231, pp. 99105.
    9. 9)
    10. 10)
      • 3. Thiel, N., Weimar, H., Kamp, H., Windisch, H.: ‘Advanced piston cooling efficiency: a comparison of different new gallery cooling concepts’. Proc. SAE World Congress, Detroit, MI, USA, 2007, 1, p. 1441.
    11. 11)
    12. 12)
    13. 13)
      • 22. Xiaofei, P.: ‘Study of nanofluids heat transfer performance in high temperature condition based on vehicular cooler’. Ph.D. thesis, Zhejiang University, Zhejiang, 2007.
    14. 14)
    15. 15)
      • 5. Yu, W., France, D.M., Choi, S.U.S., Routbort, J.L.: ‘Review and assessment of nanofluid technology for transportation and other applications’. Energy System Division, Argonne National Laboratory, Argonne, 2007.
    16. 16)
      • 19. MInli, B., Jizu, L., Tiexie, D.: ‘Numerical simulation on flowand heat transfer of cooling system in a six-cylinder diesel engine’, Trans. CSICE, 2004, 6, p. 83.
    17. 17)
      • 7. Yi, Y., Reddy, M., Jarrett, M., et al: ‘CFD modeling of the multiphase flow and heat transfer for piston gallery cooling system’. Proc. SAE World Congress, Detroit, MI, USA, 2007, 1, p. 4128.
    18. 18)
      • 6. Kajiwara, H., Fujioka, Y., Negishi, H.:Prediction of temperatures on pistons with cooling gallery in diesel engines using CFD tool’. Proc. SAE World Congress, Detroit, MI, USA, 2003, 1, pp. 986.
    19. 19)
    20. 20)
    21. 21)
      • 15. Thiel, N., Weimar, H., Hartmut, : ‘Advanced piston cooling efficiency: a comparison of different new gallery cooling concepts’. Proc. SAE World Congress, Detroit, MI, USA, 2007, p. 1441.
    22. 22)
    23. 23)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2014.0432
Loading

Related content

content/journals/10.1049/mnl.2014.0432
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address