access icon free Vibration analysis of an elastically restrained microcantilever beam under electrostatic loading using wavelet-based finite element method

An electro-mechanical analysis of a microcantilever beam considering the effect of size dependence and flexible supports is presented. Both static and dynamic analyses are performed to show the coupled effect of flexible support and electrical voltage on the static and dynamic performance of the microcantilever beam. The wavelet-based finite element method (FEM) is used to derive the elastodynamic model of the microcantilever beam. The energy expressions are derived using couple stress theory, while additional energy terms are introduced to represent the flexible boundaries and fringing fields. Numerical simulations and comparisons with experimental data show the validity of the developed wavelet-based finite element model and its potential in tackling practical problems in the design and evaluation of micro-devices.

Inspec keywords: vibration measurement; microsensors; wavelet transforms; electrostatic devices; finite element analysis; cantilevers; elastodynamics; stress analysis

Other keywords: electromechanical analysis; dynamic analyses; fringing field; size dependence effect; energy expression; static analyses; numerical simulation; electrical voltage; vibration analysis; elastically restrained microcantilever beam sensor; flexible support effect; wavelet-based finite element method; couple stress theory; electrostatic loading; elastodynamic model; microdevice evaluation

Subjects: Finite element analysis; Numerical approximation and analysis; Mechanical variables measurement; Design and modelling of MEMS and NEMS devices; Integral transforms in numerical analysis; Sensing and detecting devices; Measurement of mechanical variables; Micromechanical and nanomechanical devices and systems; Electrostatic devices; Microsensors and nanosensors

References

    1. 1)
    2. 2)
    3. 3)
      • 3. Bouwstra, S., Geijselaers, B.: ‘On the resonance frequencies of microbridges’. Int. Conf. on Solid-State Sensors and Actuators, Digest of Technical Papers, TRANSDUCERS ‘91, 1991, pp. 538542.
    4. 4)
    5. 5)
      • 6. Rinaldi, G.: ‘Dynamic analysis and validation of cantilever MEMS subjected to electro-thermo-mechanical influences’. Ph.D., Concordia University, Montreal, Canada, 2006.
    6. 6)
    7. 7)
    8. 8)
      • 25. Kang, C.H., Kim, S.Y., Park, C.G.: ‘Improvement of a low cost MEMS inertial-GPS integrated system us-ing wavelet denoising techniques’, Int. J. Aeronaut. Space Sci., 2011, 12, pp. 371378.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 20. Rao, S.S.: ‘Vibration of continuous systems’ (John Wiley & Sons, New York, NY, 2007).
    14. 14)
    15. 15)
    16. 16)
      • 4. Mullen, R.L., Mehregany, M., Omar, M.P., Ko, W.H.: ‘Theoretical modeling of boundary conditions in microfabricated beams’, Proc. IEEE Micro Electro Mechanical Systems, Nara, Japan, 1991, pp. 154159.
    17. 17)
    18. 18)
    19. 19)
      • 26. Li, P., Fang, Y.: ‘A wavelet interpolation Galerkin method for the simulation of MEMS devices under the effect of squeeze film damping’, Math. Probl. Eng., 2010, 2010, doi: 10.1155/2010/586718.
    20. 20)
    21. 21)
      • 23. Spanos, P.D.: ‘Wavelets — concepts and applications’, in de Silva, C.W.: (Ed.) ‘Vibration and shock handbook’ (CRC Press, Boca Raton, FL, 2010).
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 19. Costa Castelló, R., Shkel, A.M., Fargas Marquès, A.: ‘Modelling the electrostatic actuation of MEMS: state of the art 2005’, I'Institut d' Organització i Control de Sistimes Industrials 2005, (18).
    27. 27)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2014.0306
Loading

Related content

content/journals/10.1049/mnl.2014.0306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading