access icon free Effects of interface cohesion on mechanical properties of interpenetrating phase nanocomposites

Molecular dynamics simulations and micromechanics model analysis are performed to investigate the mechanical behaviours and interfacial effects of interpenetrating phase composites in the nanoscale. It is observed that the overall Young's modulus and ultimate strength of the nanocomposites vary nonlinearly with the cohesive energy of the interface. The cohesive properties affect the stiffness of the interface zone, and in turn, influence the effective Young's modulus of composites. The competition between interfacial failure and weak phase damage results in an optimal cohesive parameter of the interface, at which the composite possesses the maximal ultimate strength. The obtained results provide useful guidelines for the design and optimisation of advanced nanocomposites with superior mechanical properties.

Inspec keywords: micromechanics; Young's modulus; nanocomposites; elastic constants; yield strength; molecular dynamics method

Other keywords: interface cohesive energy; optimal cohesive parameter; weak phase damage; maximal ultimate strength; mechanical properties; interface cohesion effects; micromechanics model analysis; optimisation; Young's modulus; interface zone; interfacial failure; cohesive properties; molecular dynamics simulation; interpenetrating phase nanocomposites; ultimate strength

Subjects: Deformation, plasticity and creep; Elasticity and anelasticity; Deformation and plasticity; Elasticity, elastic constants; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials

References

    1. 1)
      • 22. Crowson, D.A.: ‘Stability of nanoporous metals’, PhD thesis, Virginia Polytechnic Institute and State University, 2006.
    2. 2)
      • 23. Pugh, D.V.: ‘Nanoporous platinum’, PhD thesis, Virginia Polytechnic Institute and State University, 2003.
    3. 3)
    4. 4)
      • 22. Crowson, D.A.: ‘Stability of nanoporous metals’, PhD thesis, Virginia Polytechnic Institute and State University, 2006.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • 23. Pugh, D.V.: ‘Nanoporous platinum’, PhD thesis, Virginia Polytechnic Institute and State University, 2003.
    42. 42)
      • 45. Shao, S., Wang, J., Misra, A., Hoagland, R.G.: ‘Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces’, Sci. Rep., 2013, 3, p. 2448.
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2014.0304
Loading

Related content

content/journals/10.1049/mnl.2014.0304
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading