Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Effects of interface cohesion on mechanical properties of interpenetrating phase nanocomposites

Molecular dynamics simulations and micromechanics model analysis are performed to investigate the mechanical behaviours and interfacial effects of interpenetrating phase composites in the nanoscale. It is observed that the overall Young's modulus and ultimate strength of the nanocomposites vary nonlinearly with the cohesive energy of the interface. The cohesive properties affect the stiffness of the interface zone, and in turn, influence the effective Young's modulus of composites. The competition between interfacial failure and weak phase damage results in an optimal cohesive parameter of the interface, at which the composite possesses the maximal ultimate strength. The obtained results provide useful guidelines for the design and optimisation of advanced nanocomposites with superior mechanical properties.

References

    1. 1)
      • 22. Crowson, D.A.: ‘Stability of nanoporous metals’, PhD thesis, Virginia Polytechnic Institute and State University, 2006.
    2. 2)
      • 23. Pugh, D.V.: ‘Nanoporous platinum’, PhD thesis, Virginia Polytechnic Institute and State University, 2003.
    3. 3)
    4. 4)
      • 22. Crowson, D.A.: ‘Stability of nanoporous metals’, PhD thesis, Virginia Polytechnic Institute and State University, 2006.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • 23. Pugh, D.V.: ‘Nanoporous platinum’, PhD thesis, Virginia Polytechnic Institute and State University, 2003.
    42. 42)
      • 45. Shao, S., Wang, J., Misra, A., Hoagland, R.G.: ‘Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces’, Sci. Rep., 2013, 3, p. 2448.
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2014.0304
Loading

Related content

content/journals/10.1049/mnl.2014.0304
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address