access icon free Facile one-pot low-temperature solid-state approach towards phase transformation of nanoCdS

Nanocadmium sulphide (CdS) has been prepared by the one-pot solid-state method from cadmium chloride (CdCl2) and sodium sulphide (Na2S) without any capping agent. The grinding period plays a major role in transforming CdS from the cubic (zinc blende) to the hexagonal (wurtzite) phase, hitherto unreported at the lowest temperature of 200°C by the solid-state approach. The compounds are characterised by powder X-ray diffraction, UV–visible absorption spectroscopy, scanning electron microscopy and high resolution transmission electron microscopy techniques. On the basis of the results, it has been observed that with only grinding and without subsequent heat treatment, the compounds named with their grinding period as subscript have either zinc blende – CdS(30 min) or mixed zinc blende/wurtzite – CdS(2,4, 6 and 8 h) structures. However, when subjected to heat treatment at 200°C, there is a complete phase transformation to the wurtzite structure achieved only with the CdS(8 h) compound, while the rest of the compounds show similar phases as the compounds prepared without annealing. The photocatalytic efficiency of CdS compounds on methyl orange follows the order, CdS(cubic) > CdS(mixed phase → cubic + hexagonal) > CdS(hexagonal), with cubic phase CdS showing greater efficiency than mixed and hexagonal phases.

Inspec keywords: transmission electron microscopy; heat treatment; X-ray diffraction; visible spectra; nanostructured materials; cadmium compounds; grinding; scanning electron microscopy; wide band gap semiconductors; ultraviolet spectra; II-VI semiconductors; solid-state phase transformations; nanofabrication

Other keywords: sodium sulfide; scanning electron microscopy; mixed zinc blende-wurtzite structures; phase transformation; cubic-hexagonal phase transformation; powder X-ray diffraction; UV–visible absorption spectroscopy; methyl orange; temperature 200 degC; facile one-pot low-temperature solid-state method; high resolution transmission electron microscopy; nanocadmium sulfide; grinding period; photocatalytic efficiency; cadmium chloride; heat treatment

Subjects: Other heat and thermomechanical treatments; Visible and ultraviolet spectra of II-VI and III-V semiconductors; Methods of nanofabrication and processing; Nanometre-scale semiconductor fabrication technology; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Constant-composition solid-solid phase transformations: polymorphic, massive, and order-disorder; Solid-solid transitions

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 26. Jakimavicious, J., Alisauskas, A., Sirvaitis, A.: ‘Microstructure of inserted cadmium sulphide layers’, Chem. Abstr., 1972, 76, pp. 3840038400.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 9. Wei, T., Huang, C., Hansen, B.J., et al: ‘Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors’, Appl. Phys. Lett., 2010, 96, pp. 13508/113508/3.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 30. Amalnerkar, D.P., Pavaskar, N.R., Date, S.K., Sinha, A.P.B.: ‘Structural investigations of cubic yields hexagonal phase transformation in thick films of photoconducting CdS’, Indian J. Pure Appl. Phys., 1985, 23, pp. 539547.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2014.0167
Loading

Related content

content/journals/10.1049/mnl.2014.0167
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading