access icon free Interfacial X-ray photospectrometry study of In0.53Ga0.47As under different passivation treatments for metal oxide semiconductor field effect transistor devices

In this reported work, comparison is made of a passivation treatment of a III–V compound semiconductor using ammonia and ammonium sulphide solution. The treatment is applied on In0.53Ga0.47As which is chosen for its high mobility especially in high electron mobility transistors. The samples were treated with various parameters such as precursor, vacuum condition and different chemical solutions. Then, samples were deposited with the high k-dielectric Al2O3 (4 nm thickness) using the atomic layer deposition technique. Five different passivation treatments were used to give proper comparison. Native oxide elements and contaminants were inspected at the interface of the oxide layer and the substrate using X-ray photospectrometry in different angles (25° and 70°). The results indicate the effectiveness of some treatments to eliminate the oxide of gallium and arsenic with a slight presence of indium oxide.

Inspec keywords: indium compounds; passivation; X-ray spectroscopy; high electron mobility transistors; MOSFET; gallium arsenide; Hi-Fi equipment

Other keywords: high electron mobility transistor; ammonia solution; metal oxide semiconductor field effect transistor; atomic layer deposition; high k-dielectric; passivation treatment; III–V compound semiconductor; interfacial X-ray photospectrometry; ammonium sulphide solution; In0.53Ga0.47As

Subjects: Vacuum deposition; Insulated gate field effect transistors; Other field effect devices; Surface treatment (semiconductor technology); Chemical vapour deposition

References

    1. 1)
      • 6. Irisawa, T., et al: ‘High mobility p-n junction-less InGaAs-OI tri-gate nMOSFETs with metal source/drain for ultra-low-power CMOS applications’, 2012, pp. 12.
    2. 2)
      • 14. Kwo, J., Hong, M.: ‘Research advances on III–V MOSFET electronics beyond Si CMOS’, J. Crystal Growth, 2009, 311, (7), pp. 19441949 (doi: 10.1016/j.jcrysgro.2008.10.048).
    3. 3)
      • 12. Hong, M., et al: ‘Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces’, J. Crystal Growth, 1997, 175–176, (PART 1), pp. 422427 (doi: 10.1016/S0022-0248(96)01202-X).
    4. 4)
      • 8. Maity, N.P., Chakraborty, S., Roy, M.: ‘Silicon and silicon carbide based metal-oxide-semiconductor devices using HfO2 and SiO2 gate dielectric’, Int. J. Appl. Eng. Res., 2011, 6, (3), pp. 391399.
    5. 5)
      • 9. Chang, P., et al: ‘Self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors with in-situ deposited Al2O3/Y2O3 as gate dielectrics’, Appl. Phys. Express, 2011, 4, (11), p. 114202 (doi: 10.1143/APEX.4.114202).
    6. 6)
      • 2. Lee, J.-H., et al: ‘New method for the electronic and chemical passivation of GaAs surfaces using CS2’, 1996.
    7. 7)
      • 7. Chang, C.H.: ‘Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As’, Appl. Phys. Lett., 2006, 89, (24), p. 242911 (doi: 10.1063/1.2405387).
    8. 8)
      • 21. Van Hemmen, J.L., et al: ‘Plasma and thermal ALD of Al2O3 in a commercial 200 mm ALD reactor’, J. Electrochem. Soc., 2007, 154, (7), pp. G165G169 (doi: 10.1149/1.2737629).
    9. 9)
      • 11. Chiu, H.C., et al: ‘Achieving a low interfacial density of states in atomic layer deposited Al2O3 on In0.53Ga0.47As’, Appl. Phys. Lett., 2008, 93, (20), p. 202903 (doi: 10.1063/1.3027476).
    10. 10)
      • 30. Gu, J., Wu, Y., Ye, P.: ‘Effects of gate-last and gate-first process on deep submicron inversion-mode InGaAs n-channel metal-oxide-semiconductor field effect transistors’, J. Appl. Phys., 2011, 109, (5), p. 053709 (doi: 10.1063/1.3553440).
    11. 11)
      • 19. Tang, H., et al: ‘Effect of sulfur passivation on the InP surface prior to plasma-enhanced chemical vapor deposition of SiN’, Semiconductor Sci. Technol., 2008, 23, (3), pp. 035031 (doi: 10.1088/0268-1242/23/3/035031).
    12. 12)
      • 25. Jinesh, K.B., et al: ‘Dielectric properties of thermal and plasma-assisted atomic layer deposited Al2O3 thin films’, J. Electrochem. Soc., 2011, 158, (2), pp. G21G26 (doi: 10.1149/1.3517430).
    13. 13)
      • 13. Lee, K.Y., et al: ‘Molecular beam epitaxy grown template for subsequent atomic layer deposition of high κ dielectrics’, Appl. Phys. Lett., 2006, 89, (22), p. 222906 (doi: 10.1063/1.2397542).
    14. 14)
      • 17. Pal, S., et al: ‘Phosphorous passivation of In0.53Ga0.47As using MOVPE and characterization of Au–Ga2O3 (Gd2O3)–In0.53Ga0.47As MIS capacitor’, Appl. Surface Sci., 2005, 245, (1–4), pp. 196201 (doi: 10.1016/j.apsusc.2004.10.009).
    15. 15)
      • 26. Osakabe, S., Adachi, S.: ‘Chemical treatment effect of (001) GaAs surfaces in alkaline solutions’, J. Electrochem. Soc., 1997, 144, (1), pp. 290294 (doi: 10.1149/1.1837397).
    16. 16)
      • 27. Morota, H., Adachi, S.: ‘Properties of GaP(001) surfaces chemically treated in NH4OH solution’, J. Appl. Phys., 2006, 100, (5), p. 054904 (doi: 10.1063/1.2337386).
    17. 17)
      • 22. Huang, M.L., et al: ‘Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3’, Appl. Phys. Lett., 2005, 87, (25), pp. 13 (doi: 10.1063/1.2146060).
    18. 18)
      • 15. Xuan, Y., et al: ‘High-performance submicron inversion-type enhancement-mode InGaAs MOSFET with maximum drain current of 360 mA/mm and transconductance of 130 mS/mm’. 65th Annual Device Research Conf., Notre Dame, IN, USA, 2007, 2007, pp. 207208.
    19. 19)
      • 18. Skromme, B., et al: ‘Effects of passivating ionic films on the photoluminescence properties of GaAs’, Appl. Phys. Lett., 1987, 51, (24), pp. 20222024 (doi: 10.1063/1.98280).
    20. 20)
      • 1. Hinkle, C.L., et al: ‘Detection of Ga suboxides and their impact on III–V passivation and Fermi-level pinning’, Appl. Phys. Lett., 2009, 94, (16), p. 162101 (doi: 10.1063/1.3120546).
    21. 21)
      • 23. Arabasz, S., et al: ‘XPS analysis of surface chemistry of near surface region of epiready GaAs(1 0 0) surface treated with (NH4)2Sx solution’, Appl. Surface Sci., 2006, 252, (21), pp. 76597663 (doi: 10.1016/j.apsusc.2006.03.061).
    22. 22)
      • 20. Brennan, B., et al: ‘Optimisation of the ammonium sulphide (NH4)2S passivation process on In0.53Ga0.47As’, Appl. Surface Sci., 2011, 257, (9), pp. 40824090 (doi: 10.1016/j.apsusc.2010.11.179).
    23. 23)
      • 28. Aguirre-Tostado, F., et al: ‘Indium stability on InGaAs during atomic H surface cleaning’, Appl. Phys. Lett., 2008, 92, (17), p. 171906 (doi: 10.1063/1.2919047).
    24. 24)
      • 16. Chin, H.C., et al: ‘Silane and ammonia surface passivation technology for high-mobility In0.53Ga0.47As MOSFETs’, IEEE Trans. Electron Devices, 2010, 57, (5), pp. 973979 (doi: 10.1109/TED.2010.2044285).
    25. 25)
      • 10. Xuan, Y., Wu, Y.Q., Ye, P.D.: ‘High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm’, IEEE Electron Device Lett., 2008, 29, (4), pp. 294296 (doi: 10.1109/LED.2008.917817).
    26. 26)
      • 3. Suleiman, S.A.B., Lee, S.: ‘Gate-leakage and carrier-transport mechanisms for plasma-PH 3 passivated InGaAs N-channel metal-oxide-semiconductor field-effect transistors’, J. J. Appl. Phys., 2012, 51, (2), p. 02BF02.
    27. 27)
      • 4. Driad, R., et al: ‘Reduction of surface recombination in InGaAs/InP heterostructures using UV-irradiation and ozone’, Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes Rev. Pap., 1999, 38, (2 B), pp. 11241127 (doi: 10.1143/JJAP.38.1124).
    28. 28)
      • 24. Hinkle, C.L., et al: ‘GaAs interfacial self-cleaning by atomic layer deposition’, Appl. Phys. Lett., 2008, 92, (7), p. 071901 (doi: 10.1063/1.2883956).
    29. 29)
      • 5. Lai, R., et al: ‘Sub 50 nm InP HEMT device with Fmax greater than 1 THz, 2007, pp. 609611.
    30. 30)
      • 29. Yoshida, N., et al: ‘Surface passivation of In0.52Al0.48As using (NH4)2Sx and P2S5/(NH4)2S’, Jpn. J. Appl. Phys. 1, Regul. Pap. Short Notes Rev. Pap., 1994, 33, pp. 12481252 (doi: 10.1143/JJAP.33.1248).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0560
Loading

Related content

content/journals/10.1049/mnl.2013.0560
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading