Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Influence of total gas flow on carbon nanotube forests synthesised by water-assisted chemical vapour deposition

The influence of total gas flow on the growth of carbon nanotube (CNT) forests in water-assisted chemical vapour deposition has been investigated. It was found that the average height of the CNT forests decreased gradually from 996.53 to 696.8 μm, and the growth yield decreased notably from 2.91 to 1.98 mg/cm2 as the total flow increased, but the crystallinity and thermostability of CNT forests increased with increasing total flow. Investigation on CNT growth kinetics suggested that increasing the total flow could decrease the growth rate and shorten catalyst lifetime because of decreased gas dwell time and enhanced subsurface diffusion of Fe catalyst.

References

    1. 1)
      • 21. Plata, D.L., Hart, A.J., Reddy, C.M., Gschwend, P.M.: ‘Early evaluation of potential environmental impacts of carbon nanotube synthesis by chemical vapor deposition’, Environ. Sci. Technol., 2009, 43, pp. 83678373 (doi: 10.1021/es901626p).
    2. 2)
      • 23. Wirth, C.T., Zhang, C., Zhong, G., Hofmann, S., Robertson, J.: ‘Diffusion- and reaction-limited growth of carbon nanotube forests’, ACS Nano, 2009, 3, (11), pp. 35603566 (doi: 10.1021/nn900613e).
    3. 3)
      • 10. Yasuda, S., Futaba, D.N., Yamada, T., Yumura, M., Hata, K.: ‘Gas dwell time control for rapid and long lifetime growth of single-walled carbon nanotube forests’, Nano Lett., 2011, 11, (9), pp. 36173623 (doi: 10.1021/nl201416c).
    4. 4)
      • 16. Latorre, N., Romeo, E., Cazana, F., et al: ‘Carbon nanotube growth by catalytic chemical vapor deposition: a phenomenological kinetic model’, J. Phys. Chem. C, 2010, 114, (11), pp. 47734782 (doi: 10.1021/jp906893m).
    5. 5)
      • 2. Lu, W., Qu, L.T., Henry, K., Dai, L.: ‘High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes’, J. Power Sources, 2009, 189, pp. 12701277 (doi: 10.1016/j.jpowsour.2009.01.009).
    6. 6)
      • 9. Meshot, E.R., Plata, D.L., Tawfick, S., Zhang, Y., Verploegen, E.A., Hart, A.J.: ‘Engineering vertically aligned carbon nanotube growth by decoupled thermal treatment of precursor and catalyst’, ACS Nano, 2009, 3, (9), pp. 24772486 (doi: 10.1021/nn900446a).
    7. 7)
      • 11. Youn, S.L., Frouzakis, C.E., Gopi, B.P., Robertson, J., Teo, K.B.K., Park, H.G.: ‘Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes’, Carbon, 2013, 54, pp. 343352 (doi: 10.1016/j.carbon.2012.11.046).
    8. 8)
      • 6. Pint, C.L., Pheasant, S.T., Parra-Vasquez, A.N.G., Horton, C., Xu, Y., Hauge, R.H.: ‘Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes’, J. Phys. Chem. C, 2009, 113, pp. 41254133 (doi: 10.1021/jp8070585).
    9. 9)
      • 3. Ahammad, A.J.S., Lee, J.J., Rahman, M.A.: ‘Electrochemical sensors based on carbon nanotubes’, Sensors, 2009, 9, pp. 22892319 (doi: 10.3390/s90402289).
    10. 10)
      • 12. Amama, P.B., Pint, C.L., McJilton, L., et al: ‘Role of water in super growth of single-walled carbon nanotube carpets’, Nano Lett., 2009, 9, (1), pp. 4450 (doi: 10.1021/nl801876h).
    11. 11)
      • 5. Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S.: ‘Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes’, Science, 2004, 306, pp. 13621364 (doi: 10.1126/science.1104962).
    12. 12)
      • 24. Hasegawa, K., Noda, S.: ‘Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water’, ACS Nano, 2011, 5, (2), pp. 975984 (doi: 10.1021/nn102380j).
    13. 13)
      • 14. Sakurai, S., Nishino, H., Futaba, D.N., et al: ‘Role of subsurface diffusion and Ostwald ripening in catalyst formation for single-walled carbon nanotube forest growth’, J. Am. Chem. Soc., 2012, 134, pp. 21482153 (doi: 10.1021/ja208706c).
    14. 14)
      • 18. Yamada, T., Maigne, A., Yudasaka, M., et al: ‘Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts’, Nano Lett., 2008, 8, (12), pp. 42884292 (doi: 10.1021/nl801981m).
    15. 15)
      • 15. Yasuda, S., Futaba, D.N., Yumura, M., Iijima, S., Hata, K.: ‘Diagnostics and growth control of single-walled carbon nanotube forests using a telecentric optical system for in situ height monitoring’, Appl. Phys. Lett., 2008, 93, (14), p. 143115 (doi: 10.1063/1.2987480).
    16. 16)
      • 20. Patole, S.P., Alegaonkar, P.S., Lee, H.C., Yoo, J.B.: ‘Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes’, Carbon, 2008, 46, pp. 19871993 (doi: 10.1016/j.carbon.2008.08.009).
    17. 17)
      • 22. McKee, G.S.B., Vecchio, K.S.: ‘Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes’, J. Phys. Chem. B, 2006, 110, (3), pp. 11791186 (doi: 10.1021/jp054265h).
    18. 18)
      • 17. Patole, S.P., Alegaonkar, P.S., Lee, H.C., Yoo, J.B.: ‘Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes’, Carbon, 2008, 46, pp. 19871993 (doi: 10.1016/j.carbon.2008.08.009).
    19. 19)
      • 19. Mattevi, C., Wirth, C.T., Hoffman, S., et al: ‘In-situ X-ray photoelectron spectroscopy study of catalyst-support interactions and growth of carbon nanotube forests’, J. Phys. Chem. C, 2008, 112, pp. 1220712213 (doi: 10.1021/jp802474g).
    20. 20)
      • 1. Futaba, D.N., Kimura, H., Zhao, B., et al: ‘Carbon nanotube loop arrays for low-operational power, high uniformity field emission with long-term stability’, Carbon, 2012, 50, pp. 27962803 (doi: 10.1016/j.carbon.2012.02.043).
    21. 21)
      • 4. Zhao, B., Zhang, L., Liang, Y., Qiu, H., Yang, J.: ‘Efficient growth of millimeter-long few-walled carbon nanotube forests and their oil sorption’, Appl. Phys. A, Mater. Sci. Process., 2012, 108, (2), pp. 351355 (doi: 10.1007/s00339-012-6884-8).
    22. 22)
      • 8. Futaba, D.N., Hata, K., Yamada, T., Mizuno, K., Yumura, M., Iijima, S.: ‘Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis’, Phys. Rev. Lett., 2005, 95, (5), pp. 056104056109 (doi: 10.1103/PhysRevLett.95.056104).
    23. 23)
      • 7. Futaba, D.N., Goto, J., Yasuda, S., Yamada, T., Yumura, M., Hata, K.: ‘General rules governing the highly efficient growth of carbon nanotubes’, Adv. Mater., 2009, 21, pp. 48114815 (doi: 10.1002/adma.200901257).
    24. 24)
      • 13. Kim, S.M., Pint, C.L., Amama, P.B., et al: ‘Evolution in catalyst morphology leads to carbon nanotube growth termination’, J. Phys. Chem. Lett., 2010, 1, (6), pp. 918922 (doi: 10.1021/jz9004762).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0526
Loading

Related content

content/journals/10.1049/mnl.2013.0526
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address