access icon free Dynamic behaviour of atomic force microscope-based nanomachining based on a modified couple stress theory

A modified couple stress theory is used to analyse the dynamic displacement of an atomic force microscope (AFM) cantilever during nanomachining. According to the analysis, the results show that the effect of size-dependence on the vibration behaviour of the AFM cantilever is obvious. The displacement obtained based on the modified couple stress theory is lower than that based on the classical beam theory. The maximum displacement of nanomachining with the AFM cantilever represents the cutting depth. When the excitation frequency is closer to the natural frequency of the cantilever, a larger material removal rate is obtained.

Inspec keywords: atomic force microscopy; machining; vibrations; cantilevers; cutting

Other keywords: cutting depth; excitation frequency; classical beam theory; natural frequency; size-dependence; dynamic displacement; vibration behaviour; nanomachining; atomic force microscope; material removal rate; AFM cantilever; dynamic behaviour; modified couple stress theory

Subjects: Mechanical components; Vibrations and shock waves (mechanical engineering); Scanning probe microscopy and related techniques; Machining

References

    1. 1)
      • 8. Malik, M.A., O'Brien, P., Revaprasadu, N.: ‘A simple route to the synthesis of core/shell nanoparticles of chalcogenides’, Chem. Mater., 2002, 14, pp. 20042010 (doi: 10.1021/cm011154w).
    2. 2)
      • 12. Barpuzary, D., Khan, Z., Vinothkumar, N., De, M., Qureshi, M.: ‘Hierarchically grown urchin like CdS@ZnO and CdS@Al2O3 heteroarrays for efficient visible-light-driven photocatalytic hydrogen generation’, J. Phys. Chem. C, 2012, 116, pp. 150156 (doi: 10.1021/jp207452c).
    3. 3)
      • 20. Ma, C., Dong, W., Fang, L., Zheng, F.G., Shen, M.R., Wang, Z.L.: ‘Synthesis of TiO2/Pt/TiO2 multilayer films via radio frequency magnetron sputtering and their enhanced photocatalytic activity’, Thin Solid Films, 2012, 520, pp. 57275732 (doi: 10.1016/j.tsf.2012.04.011).
    4. 4)
      • 19. Yadav, H.K., Sreenivas, K., Gupta, V., Singh, S.P., Katiyar, R.S.: ‘Effect of surface defects on the visible emission from ZnO nanoparticles’, J. Mater. Res., 2007, 22, pp. 24042409 (doi: 10.1557/jmr.2007.0321).
    5. 5)
      • 10. Zhai, J.L., Wang, L.L., Wang, D.J., et al: ‘Enhancement of gas sensing properties of CdS nanowire/ZnO nanosphere composite materials at room-temperature by visible-light activation’, ACS Appl. Mater. Interfaces, 2011, 3, pp. 22532258 (doi: 10.1021/am200008y).
    6. 6)
      • 18. Sun, T.J., Qiu, J.S., Lian, C.H.: ‘Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays’, J. Phys. Chem. C, 2008, 112, pp. 715721 (doi: 10.1021/jp710071f).
    7. 7)
      • 9. Caruso, R.A., Antonietti, M.: ‘Sol–gel nanocoating: an approach to the preparation of structured materials’, Chem. Mater., 2001, 13, pp. 32723282 (doi: 10.1021/cm001257z).
    8. 8)
      • 6. Wang, X.W., Liu, G., Lu, G.Q., Cheng, H.M.: ‘Stable photocatalytic hydrogen evolution from water over ZnO-CdS core–shell nanorods’, Int. J. Hydrog. Energy, 2010, 35, pp. 81998205 (doi: 10.1016/j.ijhydene.2009.12.091).
    9. 9)
      • 7. Liu, R.L., Huang, Y.X., Xiao, A.H., Liu, H.Q.: ‘Preparation and photocatalytic property of mesoporous ZnO/SnO2 composite nanofibers’, J. Alloys Compd., 2010, 503, pp. 103110 (doi: 10.1016/j.jallcom.2010.04.211).
    10. 10)
      • 17. Nayak, J., Sahu, S.N., Kasuya, J., Nozaki, S.: ‘CdS-ZnO composite nanorods: synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid’, Appl. Surf. Sci., 2008, 254, pp. 72157218 (doi: 10.1016/j.apsusc.2008.05.268).
    11. 11)
      • 16. Sharma, M., Jeevanandam, P.: ‘Synthesis, characterization and studies on optical properties of hierarchical ZnO-CdS nanocomposites’, Mater. Res. Bull., 2012, 47, pp. 17551761 (doi: 10.1016/j.materresbull.2012.03.044).
    12. 12)
      • 13. Xu, F., Yuan, Y.F., Han, H.J., Wu, D.P., Gao, Z.Y., Jiang, K.: ‘Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight’, Cryst. Eng. Commun., 2012, 14, pp. 36153622 (doi: 10.1039/c2ce06267d).
    13. 13)
      • 4. Wang, D.S., He, J.B., Rosenzweig, N., Rosenzweig, Z.: ‘Super paramagnetic Fe2O3 beads-CdSe/ ZnS quantum dots core–shell nanocomposite particles for cell separation’, Nano Lett., 2004, 4, pp. 409413 (doi: 10.1021/nl035010n).
    14. 14)
      • 15. Guerguerian, G., Elhordoy, F., Pereyra, C.J., et al: ‘ZnO nanorod/CdS nanocrystal core/shell-type heterostructures for solar cell applications’, Nanotechnology, 2011, 22, pp. 505401-19 (doi: 10.1088/0957-4484/22/50/505401).
    15. 15)
      • 5. van de Coevering, R., Alfers, A.P., Meeldijk, J.D., et al: ‘Ionic core–shell dendrimers with an octacationic core as noncovalent supports for homogeneous catalysts’, J. Am. Chem. Soc., 2006, 128, pp. 1270012713 (doi: 10.1021/ja060079t).
    16. 16)
      • 14. Yao, C.Z., Wei, B.H., Meng, L.X., et al: ‘Controllable electrochemical synthesis and photovoltaic performance of ZnO/CdS core-shell nanorod arrays on fluorine-doped tin oxide’, J. Power Sources, 2012, 207, pp. 222228 (doi: 10.1016/j.jpowsour.2012.01.154).
    17. 17)
      • 11. Li, B.X., Wang, Y.F.: ‘Synthesis, microstructure, and photocatalysis of ZnO/CdS nanohetero-structure’, J. Phys. Chem. Solids, 2011, 72, pp. 11651169 (doi: 10.1016/j.jpcs.2011.07.010).
    18. 18)
      • 3. Fleischhaker, F., Zentel, R.: ‘Photonic crystals from core–shell colloids with incorporated highly fluorescent quantum dots’, Chem. Mater., 2005, 17, pp. 13461351 (doi: 10.1021/cm0481022).
    19. 19)
      • 21. Liu, S.L., Li, M.M., Li, S., Li, H.L., Yan, L.: ‘Synthesis and adsorption/photocatalysis performance of pyrite FeS2’, Appl. Surf. Sci., 2013, 268, pp. 213217 (doi: 10.1016/j.apsusc.2012.12.061).
    20. 20)
      • 2. Alivisatos, P.: ‘The use of nanocrystals in biological detection’, Nat. Biotechnol., 2004, 22, pp. 4752 (doi: 10.1038/nbt927).
    21. 21)
      • 1. Zhang, J.L., Srivastava, R.S., Misra, R.D.: ‘Core–shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-tar getting delivery system’, Langmuir, 2007, 23, pp. 63426351 (doi: 10.1021/la0636199).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0493
Loading

Related content

content/journals/10.1049/mnl.2013.0493
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading