Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Aspiration through hollow cantilever-based nanopipette by means of evaporation

Presented is a method for aspirating liquids into a hollow atomic force microscope (AFM)-cantilever through a 350 nm-wide nozzle near the tip apex. The cantilever was made of transparent SiO2 and connected a fluidic reservoir to an evaporation cell. The nanopipette-chip is suitable for mounting the microfluidic system into commercial AFMs. The channel inside the lever spontaneously filled with liquid by capillary forces upon which evaporation started and continuously pumped liquid from the reservoir. The resonance frequency of the cantilever was found to be 153.946 kHz when empty and a frequency shift of 92 Hz was measured when filled. The cantilever's transparency allowed visualisation of the advancing meniscus in real time and confirmed the presence of aspirated, fluorescently labelled liquid. An aspiration rate of ∼230 aL/s was measured. This value represents the flow rate in the microfluidic system when operated under ambient conditions (21°C temperature, 43% relative humidity). The estimated volume that has been aspirated in total was ∼ 85.42 aL. The aspiration capability of the device was tested and analysed under an optical microscope using an aqueous solution of fluorescently labelled nanobeads. The nanopipetting experiments represent an extension over the authors' earlier work which concentrated on the dispensing and imaging capabilities of a similar system.

References

    1. 1)
      • 13. Leichle, T., Lishchynska, M., Mathieu, F., et al: ‘A microcantilever-based picoliter droplet dispenser with integrated force sensors and electroassisted deposition means’, J. Microelectromech. Syst., 2008, 17, (5), pp. 12391253 (doi: 10.1109/JMEMS.2008.927745).
    2. 2)
      • 8. Meister, A., Gabi, M., Behr, P., et al: ‘FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond’, Nano Lett., 2009, 9, (6), pp. 25012507 (doi: 10.1021/nl901384x).
    3. 3)
      • 7. Rodolfa, K.T., Bruckbauer, A., Zhou, D., et al: ‘Nanoscale pipetting for controlled chemistry in small arrayed water droplets using a double-barrel pipet’, Nano Lett., 2006, 6, (2), pp. 252257 (doi: 10.1021/nl052215i).
    4. 4)
      • 22. Heuck, F.: ‘Developing and analysing sub-10 μm fluidic systems with integrated electrodes for pumping and sensing in nanotechnology applications’. PhD Thesis, 2010.
    5. 5)
      • 2. Barth, C., Reichling, M.: ‘Imaging the atomic arrangements on the high-temperature reconstructed alpha-Al2O3(0001) surface’, Nature, 2001, 414, (6859), pp. 5457 (doi: 10.1038/35102031).
    6. 6)
      • 16. Perez Garza, H.H., Ghatkesar, M., Staufer, U.: ‘Combined AFM-nanopipette cartridge system for actively dispensing femtolitre droplets’, J. Micro-Bio Robot., 2013, 8, (1), pp. 3340 (doi: 10.1007/s12213-013-0064-6).
    7. 7)
      • 5. Sugimoto, Y., Abe, M., Hirayamo, S., et al: ‘Atom inlays performed at room temperature using atomic force microscopy’, Nature Mater., 2005, 4, (2), pp. 156U36 (doi: 10.1038/nmat1297).
    8. 8)
      • 10. Kim, K.H., Moldovan, N., Ke, C., et al: ‘A novel AFM chip for fountain pen nanolithography – design and microfabrication’, Micro Nanosyst., 2004, 782, pp. 267272.
    9. 9)
      • 6. Thalhammer, S., Stark, R.W., Muller, S., et al: ‘The atomic force microscope as a new microdissecting tool for the generation of genetic probes’, J. Struct. Biol., 1997, 119, (2), pp. 232237 (doi: 10.1006/jsbi.1997.3869).
    10. 10)
      • 15. Hug, T.S., Biss, T., de Rooij, N. F., et al: ‘Generic fabriction technology for transparent and suspended microfluidic and nanofluidic channels’. Transducers '05, Dig. Tech. Pprs, 2005, vol. 1 and 2, pp. 11911194.
    11. 11)
      • 3. Morita, S., Yi, I., Sugimoto, Y., et al: ‘Mechanical distinction and manipulation of atoms based on noncontact atomic force microscopy’, Appl. Surf. Sci., 2005, 241, (1–2), pp. 28 (doi: 10.1016/j.apsusc.2004.09.008).
    12. 12)
      • 21. CORD Communications: ‘Physics in context: an integrated approach’ (CCI Publishing, 2001).
    13. 13)
      • 12. Meister, A., Jeney, S., Liley, M., et al: ‘Nanoscale dispensing of liquids through cantilevered probes’, Microelectron. Eng., 2003, 67–8, pp. 644650 (doi: 10.1016/S0167-9317(03)00126-6).
    14. 14)
      • 17. Heuck, F., Hug, T., Akiyama, T., et al: ‘Evaporation based micro pump integrated into a scanning force microscope probe’, Microelectron. Eng., 2008, 85, (5–6), pp. 13021305 (doi: 10.1016/j.mee.2007.12.047).
    15. 15)
      • 19. Chesworth, W.: ‘Encyclopedia of soil science’ (Springer, Dordrecht, The Netherlands, 2008), p. 902.
    16. 16)
      • 9. Kley, V.B.: US patent 6,354,219 B1, 2002.
    17. 17)
      • 11. Piner, R.D., Zhu, J., Xu, F., et al: ‘“Dip-pen” nanolithography’, Science, 1999, 283, (5402), pp. 661663 (doi: 10.1126/science.283.5402.661).
    18. 18)
      • 4. Oyabu, N., Sugimoto, Y., Abe, M., et al: ‘Lateral manipulation of single atoms at semiconductor surfaces using atomic force microscopy’, Nanotechnology, 2005, 16, (3), pp. S112S117 (doi: 10.1088/0957-4484/16/3/021).
    19. 19)
      • 18. Kumar, C.S.S.R.: ‘Microfluidic devices in nanotechnology: applications’ (John Wiley & Sons, Hoboken, New Jersey, 2010).
    20. 20)
      • 20. Zhang, R.J., Ikoma, Y., Motooka, T.: ‘Negative capillary-pressure-induced cavitation probability in nanochannels’, Nanotechnology, 2010, 21, (10), p. 105706 (doi: 10.1088/0957-4484/21/10/105706).
    21. 21)
      • 1. Giessibl, F.J.: ‘Atomic-resolution of the silicon (111)-(7 × 7) surface by atomic-force microscopy’, Science, 1995, 267, (5194), pp. 6871 (doi: 10.1126/science.267.5194.68).
    22. 22)
      • 14. Dorig, P., Stiefec, P., Behr, P., et al: ‘Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology’, Appl. Phys. Lett., 2010, 97, (2), p. 023701 (doi: 10.1063/1.3462979).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0362
Loading

Related content

content/journals/10.1049/mnl.2013.0362
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address