Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Photothermal excitation of microcantilevers in liquid: effect of the excitation laser position on temperature and vibrational amplitude

Demands to improve the sensitivity and measurement speed of dynamic scanning force microscopy and cantilever sensing applications necessitate the development of smaller cantilever sensors. As a result, methods to directly drive cantilevers, such as photothermal or magnetic excitation, are gaining in importance. Presented is a report on the effect of photothermal excitation of microcantilevers on the increase in steady-state temperature and the dynamics of higher mode vibrations. First, the local temperature increase upon continuous irradiation with laser light at different positions along the cantilever was measured and compared with finite element analysis data. The temperature increase was highest when the heating laser was positioned at the free end of the cantilever. Next, the laser intensity was modulated to drive higher flexural modes to resonance. The dependence of the cantilever dynamics on the excitation laser position was assessed and was in good agreement with the analytical expressions. An optimal position to simultaneously excite all flexural modes of vibration with negligible heating was found at the clamped end of the cantilever. The reports findings are essential for optimisation of the excitation efficiency to minimise the rise in temperature and avoid damaging delicate samples or functionalisation layers.

References

    1. 1)
      • 5. Asakawa, H., Fukuma, T.: ‘Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism’, Rev. Sci. Instrum., 2009, 80, (10), p. 103703 (doi: 10.1063/1.3238484).
    2. 2)
      • 18. Ilic, B., Krylov, S., Craighead, H.G.: ‘Theoretical and experimental investigation of optically driven nanoelectromechanical oscillators’, J. Appl. Phys., 2010, 107, (3), p. 034311 (doi: 10.1063/1.3305464).
    3. 3)
      • 17. Wang, S., Wang, X., Liu, Y., Huang, B.: ‘Parameter optimization of microcantilevers optically excited by a semiconductor laser with optical feedback’, Optik., 2009, 120, (13), pp. 676682 (doi: 10.1016/j.ijleo.2008.02.019).
    4. 4)
      • 22. Vassalli, M., Pini, V., Tiribilli, B.: ‘Role of the driving laser position on atomic force microscopy cantilevers excited by photothermal and radiation pressure effects’, Appl. Phys. Lett., 2010, 97, (14), p. 143105 (doi: 10.1063/1.3497074).
    5. 5)
      • 7. Han, W., Lindsay, S.M., Jing, T.: ‘A magnetically driven oscillating probe microscope for operation in liquids’, Appl. Phys. Lett., 1996, 69, (26), pp. 41114113 (doi: 10.1063/1.117835).
    6. 6)
      • 33. Canetta, C., Narayanaswamy, A.: ‘Sub-picowatt resolution calorimetry with a bi-material microcantilever sensor’, Appl. Phys. Lett., 2013, 102, (10), p. 103112 (doi: 10.1063/1.4795625).
    7. 7)
      • 12. Labuda, A., Kobayashi, K., Miyahara, Y., Grütter, P.H.: ‘Retrofitting an atomic force microscope with photothermal excitation for a clean cantilever response in low Q environments’, Rev. Sci. Instrum., 2012, 83, (5), p. 053703 (doi: 10.1063/1.4712286).
    8. 8)
      • 19. Kiracofe, D., Kobayashi, K., Labuda, A., Raman, A., Yamada, H.: ‘High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids’, Rev. Sci. Instrum., 2011, 82, (1), p. 013702 (doi: 10.1063/1.3518965).
    9. 9)
      • 20. Kim, S., Kihm, K.D.: ‘Experimental verification of the temperature effects on Sader's model for multilayered cantilevers immersed in an aqueous medium’, Appl. Phys. Lett., 2006, 89, (6), p. 061918 (doi: 10.1063/1.2240737).
    10. 10)
      • 1. Jalili, N., Laxminarayana, K.: ‘A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences’, Mechatronics, 2004, 14, (8), pp. 907945 (doi: 10.1016/j.mechatronics.2004.04.005).
    11. 11)
      • 3. Schäffer, T.E., Cleveland, J.P., Ohnesorge, F., Walters, D.A., Hansma, P.K.: ‘Studies of vibrating atomic force microscope cantilevers in liquid’, J. Appl. Phys., 1996, 80, (7), pp. 36223627 (doi: 10.1063/1.363308).
    12. 12)
      • 11. Ratcliff, G.C., Erie, D.A., Superfine, R.: ‘Photothermal modulation for oscillating mode atomic force microscopy in solution’, Appl. Phys. Lett., 1998, 72, (15), pp. 19111913 (doi: 10.1063/1.121224).
    13. 13)
      • 25. Bircher, B.A., Duempelmann, L., Renggli, K., et al: ‘Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators’, Anal. Chem., 2013, 85, (18), pp. 86768683 (doi: 10.1021/ac4014918).
    14. 14)
      • 27. Shen, S., Narayanaswamy, A., Goh, S., Chen, G.: ‘Thermal conductance of bimaterial microcantilevers’, Appl. Phys. Lett., 2008, 92, (6), p. 063509 (doi: 10.1063/1.2829999).
    15. 15)
      • 26. Ramos, D., Mertens, J., Calleja, M., Tamayo, J.: ‘Study of the origin of bending induced by bimetallic effect on microcantilever’, Sensors, 2007, 7, (9), pp. 17571765 (doi: 10.3390/s7091757).
    16. 16)
      • 10. Inaba, S., Akaishi, K., Mori, T., Hane, K.: ‘Analysis of the resonance characteristics of a cantilever vibrated photothermally in a liquid’, J. Appl. Phys., 1993, 73, (6), pp. 26542658 (doi: 10.1063/1.353060).
    17. 17)
      • 2. Johnson, B.N., Mutharasan, R.: ‘Biosensing using dynamic-mode cantilever sensors: a review’, Biosens. Bioelectron., 2012, 32, (1), pp. 118 (doi: 10.1016/j.bios.2011.10.054).
    18. 18)
      • 30. Moulin, A.M., Stephenson, R.J., Welland, M.E.: ‘Micromechanical thermal sensors: comparison of experimental results and simulations’, J. Vac. Sci. Technol. B, 1997, 15, (3), pp. 590596 (doi: 10.1116/1.589297).
    19. 19)
      • 8. Venkatesh, S., Culshaw, B.: ‘Optically activated vibrations in a micromachined silica structure’, Electron. Lett., 1985, 21, (8), p. 315317 (doi: 10.1049/el:19850223).
    20. 20)
      • 32. Paolino, P., Tiribilli, B., Bellon, L.: ‘Direct measurement of spatial modes of a microcantilever from thermal noise’, J. Appl. Phys., 2009, 106, (9), p. 094313 (doi: 10.1063/1.3245394).
    21. 21)
      • 24. Mishra, R., Grange, W., Hegner, M.: ‘Rapid and reliable calibration of laser beam deflection system for microcantilever-based sensor setups’, J. Sensors., 2012, 2012, p. ID617386 (doi: 10.1155/2012/617386).
    22. 22)
      • 21. Barnes, J.R., Stephenson, R.J., Woodburn, C.N., et al: ‘A femtojoule calorimeter using micromechanical sensors’, Rev. Sci. Instrum., 1994, 65, (12), pp. 37933798 (doi: 10.1063/1.1144509).
    23. 23)
      • 15. Nishida, S., Kobayashi, D., Kawakatsu, H., Nishimori, Y.: ‘Photothermal excitation of a single-crystalline silicon cantilever for higher vibration modes in liquid’, J. Vac. Sci. Technol. B., 2009, 27, (2), pp. 964968 (doi: 10.1116/1.3077487).
    24. 24)
      • 13. Stahl, S.W., Puchner, E.M., Gaub, H.E.: ‘Photothermal cantilever actuation for fast single-molecule force spectroscopy’, Rev. Sci. Instrum., 2009, 80, (7), p. 073702 (doi: 10.1063/1.3157466).
    25. 25)
      • 6. Labuda, A., Kobayashi, K., Kiracofe, D., Suzuki, K., Gruetter, P.H., Yamada, H.: ‘Comparison of photothermal and piezoacoustic excitation methods for frequency and phase modulation atomic force microscopy in liquid environments’, AIP Adv., 2011, 1, (2), p. 022136 (doi: 10.1063/1.3601872).
    26. 26)
      • 16. Ramos, D., Tamayo, J., Mertens, J., Calleja, M.: ‘Photothermal excitation of microcantilevers in liquids’, J. Appl. Phys., 2006, 99, (12), p. 124904 (doi: 10.1063/1.2205409).
    27. 27)
      • 23. de Araújo, M.A.C., Silva, R., de Lima, E., Pereira, D.P., de Oliveira, P.C.: ‘Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis’, Appl. Opt., 2009, 48, (2), pp. 393396 (doi: 10.1364/AO.48.000393).
    28. 28)
      • 14. Ramos, D., Mertens, J., Calleja, M., Tamayo, J.: ‘Photothermal self-excitation of nanomechanical resonators in liquids’, Appl. Phys. Lett., 2008, 92, (17), p. 173108 (doi: 10.1063/1.2917718).
    29. 29)
      • 28. Liu, C., Zhang, D., Zhang, H., Jiang, J.Z.: ‘Dynamic characteristics of micro-optothermal expansion and optothermal microactuators’, Micro Nano Lett., 2009, 4, (1), pp. 915 (doi: 10.1049/mnl:20080044).
    30. 30)
      • 4. Maali, A., Hurth, C., Cohen-Bouhacina, T., Couturier, G., Aimé, J.-P.: ‘Improved acoustic excitation of atomic force microscope cantilevers in liquids’, Appl. Phys. Lett., 2006, 88, (16), p. 163504 (doi: 10.1063/1.2196052).
    31. 31)
      • 29. Burke, B.G., LaVan, D.A.: ‘Laser heating and detection of bilayer microcantilevers for non-contact thermodynamic measurements’, Appl. Phys. Lett., 2013, 102, (2), p. 021916 (doi: 10.1063/1.4776197).
    32. 32)
      • 11. Ratcliff, G.C., Erie, D.A., Superfine, R.: ‘Photothermal modulation for oscillating mode atomic force microscopy in solution’, Appl. Phys. Lett., 1998, 72, (15), pp. 19111913.
    33. 33)
      • 10. Inaba, S., Akaishi, K., Mori, T., Hane, K.: ‘Analysis of the resonance characteristics of a cantilever vibrated photothermally in a liquid’, J. Appl. Phys., 1993, 73, (6), pp. 26542658.
    34. 34)
      • 23. de Araújo, M.A.C., Silva, R., de Lima, E., Pereira, D.P., de Oliveira, P.C.: ‘Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis’, Appl. Opt., 2009, 48, (2), pp. 393396.
    35. 35)
      • 19. Kiracofe, D., Kobayashi, K., Labuda, A., Raman, A., Yamada, H.: ‘High efficiency laser photothermal excitation of microcantilever vibrations in air and liquids’, Rev. Sci. Instrum., 2011, 82, (1), p. 013702.
    36. 36)
      • 5. Asakawa, H., Fukuma, T.: ‘Spurious-free cantilever excitation in liquid by piezoactuator with flexure drive mechanism’, Rev. Sci. Instrum., 2009, 80, (10), p. 103703.
    37. 37)
      • 21. Barnes, J.R., Stephenson, R.J., Woodburn, C.N., et al: ‘A femtojoule calorimeter using micromechanical sensors’, Rev. Sci. Instrum., 1994, 65, (12), pp. 37933798.
    38. 38)
      • 1. Jalili, N., Laxminarayana, K.: ‘A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences’, Mechatronics, 2004, 14, (8), pp. 907945.
    39. 39)
      • 7. Han, W., Lindsay, S.M., Jing, T.: ‘A magnetically driven oscillating probe microscope for operation in liquids’, Appl. Phys. Lett., 1996, 69, (26), pp. 41114113.
    40. 40)
      • 30. Moulin, A.M., Stephenson, R.J., Welland, M.E.: ‘Micromechanical thermal sensors: comparison of experimental results and simulations’, J. Vac. Sci. Technol. B, 1997, 15, (3), pp. 590596.
    41. 41)
      • 28. Liu, C., Zhang, D., Zhang, H., Jiang, J.Z.: ‘Dynamic characteristics of micro-optothermal expansion and optothermal microactuators’, Micro Nano Lett., 2009, 4, (1), pp. 915.
    42. 42)
      • 25. Bircher, B.A., Duempelmann, L., Renggli, K., et al: ‘Real-time viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators’, Anal. Chem., 2013, 85, (18), pp. 86768683.
    43. 43)
      • 8. Venkatesh, S., Culshaw, B.: ‘Optically activated vibrations in a micromachined silica structure’, Electron. Lett., 1985, 21, (8), p. 315317.
    44. 44)
      • 26. Ramos, D., Mertens, J., Calleja, M., Tamayo, J.: ‘Study of the origin of bending induced by bimetallic effect on microcantilever’, Sensors, 2007, 7, (9), pp. 17571765.
    45. 45)
      • 16. Ramos, D., Tamayo, J., Mertens, J., Calleja, M.: ‘Photothermal excitation of microcantilevers in liquids’, J. Appl. Phys., 2006, 99, (12), p. 124904.
    46. 46)
      • 27. Shen, S., Narayanaswamy, A., Goh, S., Chen, G.: ‘Thermal conductance of bimaterial microcantilevers’, Appl. Phys. Lett., 2008, 92, (6), p. 063509.
    47. 47)
      • 33. Canetta, C., Narayanaswamy, A.: ‘Sub-picowatt resolution calorimetry with a bi-material microcantilever sensor’, Appl. Phys. Lett., 2013, 102, (10), p. 103112.
    48. 48)
      • 24. Mishra, R., Grange, W., Hegner, M.: ‘Rapid and reliable calibration of laser beam deflection system for microcantilever-based sensor setups’, J. Sensors., 2012, 2012, p. ID617386.
    49. 49)
      • 29. Burke, B.G., LaVan, D.A.: ‘Laser heating and detection of bilayer microcantilevers for non-contact thermodynamic measurements’, Appl. Phys. Lett., 2013, 102, (2), p. 021916.
    50. 50)
      • 15. Nishida, S., Kobayashi, D., Kawakatsu, H., Nishimori, Y.: ‘Photothermal excitation of a single-crystalline silicon cantilever for higher vibration modes in liquid’, J. Vac. Sci. Technol. B., 2009, 27, (2), pp. 964968.
    51. 51)
      • 31. COMSOL Multiphysics – Modeling Guide, VERSION 3.5a. COMSOL, available at http://www.comsol.com; 2008.
    52. 52)
      • 17. Wang, S., Wang, X., Liu, Y., Huang, B.: ‘Parameter optimization of microcantilevers optically excited by a semiconductor laser with optical feedback’, Optik., 2009, 120, (13), pp. 676682.
    53. 53)
      • 2. Johnson, B.N., Mutharasan, R.: ‘Biosensing using dynamic-mode cantilever sensors: a review’, Biosens. Bioelectron., 2012, 32, (1), pp. 118.
    54. 54)
      • 22. Vassalli, M., Pini, V., Tiribilli, B.: ‘Role of the driving laser position on atomic force microscopy cantilevers excited by photothermal and radiation pressure effects’, Appl. Phys. Lett., 2010, 97, (14), p. 143105.
    55. 55)
      • 14. Ramos, D., Mertens, J., Calleja, M., Tamayo, J.: ‘Photothermal self-excitation of nanomechanical resonators in liquids’, Appl. Phys. Lett., 2008, 92, (17), p. 173108.
    56. 56)
      • 3. Schäffer, T.E., Cleveland, J.P., Ohnesorge, F., Walters, D.A., Hansma, P.K.: ‘Studies of vibrating atomic force microscope cantilevers in liquid’, J. Appl. Phys., 1996, 80, (7), pp. 36223627.
    57. 57)
      • 6. Labuda, A., Kobayashi, K., Kiracofe, D., Suzuki, K., Gruetter, P.H., Yamada, H.: ‘Comparison of photothermal and piezoacoustic excitation methods for frequency and phase modulation atomic force microscopy in liquid environments’, AIP Adv., 2011, 1, (2), p. 022136.
    58. 58)
      • 4. Maali, A., Hurth, C., Cohen-Bouhacina, T., Couturier, G., Aimé, J.-P.: ‘Improved acoustic excitation of atomic force microscope cantilevers in liquids’, Appl. Phys. Lett., 2006, 88, (16), p. 163504.
    59. 59)
      • 32. Paolino, P., Tiribilli, B., Bellon, L.: ‘Direct measurement of spatial modes of a microcantilever from thermal noise’, J. Appl. Phys., 2009, 106, (9), p. 094313.
    60. 60)
      • 9. Lammerink, T.S.J., Elwenspoek, M., Fluitman, J.H.J.: ‘Optical excitation of micro-mechanical resonators’. IEEE Micro Electro Mechanical Systems (MEMS 1991), Nara, Japan, 1991, pp. 160165.
    61. 61)
      • 12. Labuda, A., Kobayashi, K., Miyahara, Y., Grütter, P.H.: ‘Retrofitting an atomic force microscope with photothermal excitation for a clean cantilever response in low Q environments’, Rev. Sci. Instrum., 2012, 83, (5), p. 053703.
    62. 62)
      • 13. Stahl, S.W., Puchner, E.M., Gaub, H.E.: ‘Photothermal cantilever actuation for fast single-molecule force spectroscopy’, Rev. Sci. Instrum., 2009, 80, (7), p. 073702.
    63. 63)
      • 20. Kim, S., Kihm, K.D.: ‘Experimental verification of the temperature effects on Sader's model for multilayered cantilevers immersed in an aqueous medium’, Appl. Phys. Lett., 2006, 89, (6), p. 061918.
    64. 64)
      • 18. Ilic, B., Krylov, S., Craighead, H.G.: ‘Theoretical and experimental investigation of optically driven nanoelectromechanical oscillators’, J. Appl. Phys., 2010, 107, (3), p. 034311.
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0352
Loading

Related content

content/journals/10.1049/mnl.2013.0352
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address