Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Submicron-grooved culture surface extends myotube length by forming parallel and elongated motif

During skeletal muscle development, correct cellular orientation is vital to generate desired longitudinal contraction for functional muscle fibres. In this reported study, submicron-imprint lithography was used to generate submicron-grooved surfaces on polystyrene plates to induce striated myotubes in vitro. Mouse muscle myoblast cells cultured on a submicron-grooved surface migrated faster in a directionally uniform fashion; in comparison, cells cultured on a flat surface grew and migrated slower in indiscriminate directions. Subsequent maturation of the myoblast cells formed along the submicron-groove surface resulted in a tandem of parallel myotubes that were both longer and greater in circumference than in the case of the flat surface. In a functional test, the co-culture submicron-groove-grown myotubes with neurotransmitter secreting cells further demonstrated contraction abilities, suggesting submicron-groove-guided growth served to enhance myotube formation while retaining striated motifs and physiological functionality for muscle tissue engineering.

References

    1. 1)
      • 19. Provenzano, P.P., Inman, D.R., Eliceiri, K.W., Trier, S.M., Keely, P.J.: ‘Contact guidance mediated three-dimensional cell migration is regulated by rho/rock-dependent matrix reorganization’, Biophys. J., 2008, 95, (11), pp. 53745384 (doi: 10.1529/biophysj.108.133116).
    2. 2)
      • 3. Andres, V., Walsh, K.: ‘Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis’, J. Cell Biol., 1996, 132, (4), pp. 657666 (doi: 10.1083/jcb.132.4.657).
    3. 3)
      • 1. Bach, A.D., Beier, J.P., Stern-Staeter, J., Horch, R.E.: ‘Skeletal muscle tissue engineering’, J Cell Mol. Med., 2004, 8, (4), pp. 413422 (doi: 10.1111/j.1582-4934.2004.tb00466.x).
    4. 4)
      • 7. Huang, N.F., Patel, S., Thakar, R.G., et al: ‘Myotube assembly on nanofibrous and micropatterned polymers’, Nano Lett., 2006, 6, (3), pp. 537542 (doi: 10.1021/nl060060o).
    5. 5)
      • 14. Diehl, K.A., Foley, J.D., Nealey, P.F., Murphy, C.J.: ‘Nanoscale topography modulates corneal epithelial cell migration’, J Biomed. Mater. Res. A, 2005, 75, (3), pp. 603611.
    6. 6)
      • 12. Lam, M.T., Sim, S., Zhu, X., Takayama, S.: ‘The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes’, Biomaterials, 2006, 27, (24), pp. 43404347 (doi: 10.1016/j.biomaterials.2006.04.012).
    7. 7)
      • 18. Yan, W., George, S., Fotadar, U., et al: ‘Tissue engineering of skeletal muscle’, Tissue Eng., 2007, 13, (11), pp. 27812790 (doi: 10.1089/ten.2006.0408).
    8. 8)
      • 9. Evans, D.J., Britland, S., Wigmore, P.M.: ‘Differential response of fetal and neonatal myoblasts to topographical guidance cues in vitro’, Dev. Genes Evol., 1999, 209, (7), pp. 438442 (doi: 10.1007/s004270050275).
    9. 9)
      • 15. Wojciak-Stothard, B., Curtis, A.S., Monaghan, W., McGrath, M., Sommer, I., Wilkinson, C.D.: ‘Role of the cytoskeleton in the reaction of fibroblasts to multiple grooved substrata’, Cell Motil. Cytoskeleton, 1995, 31, (2), pp. 147158 (doi: 10.1002/cm.970310207).
    10. 10)
      • 8. Liao, I.C., Liu, J.B., Bursac, N., Leong, K.W.: ‘Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers’, Cell Mol. Bioeng., 2008, 1, (2–3), pp. 133145 (doi: 10.1007/s12195-008-0021-y).
    11. 11)
      • 5. Berendse, M., Grounds, M.D., Lloyd, C.M.: ‘Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly’, Exp. Cell Res., 2003, 291, (2), pp. 435450 (doi: 10.1016/j.yexcr.2003.07.004).
    12. 12)
      • 6. Coletti, D., Teodori, L., Albertini, M.C., et al: ‘Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment’, Cytometry A, 2007, 71, (10), pp. 846856.
    13. 13)
      • 17. Wakelam, M.J.: ‘The fusion of myoblasts’, Biochem. J., 1985, 228, (1), pp. 112.
    14. 14)
      • 11. Charest, J.L., Garcia, A.J., King, W.P.: ‘Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries’, Biomaterials, 2007, 28, (13), pp. 22022210 (doi: 10.1016/j.biomaterials.2007.01.020).
    15. 15)
      • 2. Wigmore, P.M., Dunglison, G.F.: ‘The generation of fiber diversity during myogenesis’, Int. J. Dev. Biol., 1998, 42, (2), pp. 117125.
    16. 16)
      • 4. Formigli, L., Meacci, E., Sassoli, C., et al: ‘Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts’, J. Cell Physiol., 2007, 211, (2), pp. 296306 (doi: 10.1002/jcp.20936).
    17. 17)
      • 13. Yim, E.K., Leong, K.W.: ‘Significance of synthetic nanostructures in dictating cellular response’, Nanomedicine, 2005, 1, (1), pp. 1021 (doi: 10.1016/j.nano.2004.11.008).
    18. 18)
      • 16. Teixeira, A.I., Abrams, G.A., Bertics, P.J., Murphy, C.J., Nealey, P.F.: ‘Epithelial contact guidance on well-defined micro- and nanostructured substrates’, J. Cell Sci., 2003, 116, (Pt 10), pp. 18811892 (doi: 10.1242/jcs.00383).
    19. 19)
      • 10. Dalby, M.J., Riehle, M.O., Yarwood, S.J., Wilkinson, C.D., Curtis, A.S.: ‘Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography’, Exp. Cell Res., 2003, 284, (2), pp. 274282 (doi: 10.1016/S0014-4827(02)00053-8).
http://iet.metastore.ingenta.com/content/journals/10.1049/mnl.2013.0153
Loading

Related content

content/journals/10.1049/mnl.2013.0153
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address