http://iet.metastore.ingenta.com
1887

access icon openaccess Research on geometrical parameters effect of fan nozzle jet performance based on orthogonal experiment

  • HTML
    98.388671875Kb
  • XML
    99.935546875Kb
  • PDF
    2.9661483764648438MB
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8971/JOE.2018.8971.html;jsessionid=93n4sekjj8me.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8971&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Schneider, E., Bussjaeger, S.D., Franco, S., et al: ‘Analysis of compressor on-line washing to optimize gas turbine power plant performance’, J. Eng. Gas Turbines Power, 2010, 132, (6), p. 062001.
    2. 2)
      • 2. Stalder, J.P., Van Oosten, P.: ‘Compressor washing maintains plant performance and reduces cost of energy production’. ASME 1994 Int. Gas Turbine and Aeroengine Congress and Exposition, 1994, pp. V004T10A021V004T10A021.
    3. 3)
      • 3. Mund, F.C., Pilidis, P.: ‘A review of gas turbine online washing systems’. ASME Turbo Expo 2004: Power for Land, Sea, and Air.American Society of Mechanical Engineers, 2004, pp. 519528.
    4. 4)
      • 4. Chunyan, S., Jiahu, Y., Fan, W., et al: ‘Nozzle design of fluid jet polishing’, Opto-Electron. Eng., 2008, 35, (12), pp. 131135.
    5. 5)
      • 5. Altimira, M., Rivas, A., Larraona, G.S., et al: ‘Characterization of fan spray atomizers through numerical simulation’, Int. J. Heat Fluid Flow, 2009, 30, (2), pp. 339355.
    6. 6)
      • 6. Arruda, M.P., Lawson, N.: ‘Experimental and computational investigation on submerged entry nozzle Jet control’. ASME-JSME 2003, Joint Fluids Summer Engineering Conf., Hononlulu, HI, USA, 2003, pp. 27612768.
    7. 7)
      • 7. Zhong, Z.W., Han, Z.Z.: ‘Performance comparison of four waterjet nozzles’, Adv. Manuf. Process., 2003, 18, (6), pp. 965978.
    8. 8)
      • 8. Ghassemieh, E., Versteeg, H.K., Acar, M.: ‘Effect of nozzle geometry on the flow characteristics of hydroentangling jets’, Tex. Res. J., 2003, 73, (5), pp. 444450.
    9. 9)
      • 9. Wang, C, Jin, X, Wang, S.: ‘Effect of nozzle geometry on the flow dynamics of hydroentangling jet’, J. Ind. Text, 2007, 37, (1), pp. 7989.
    10. 10)
      • 10. Eri, Q, Zhang, Z, Zhang, R, et al: ‘Numerical simulation of jet mixing enhancement using rectangular control jets’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2017, p. 095441001772702.
    11. 11)
      • 11. Tafreshi, H.V., Pourdeyhimi, B.: ‘Simulating the flow dynamics in hydroentangling nozzles: effect of cone angle and nozzle aspect ratio’, Tex. Res. J., 2003, 73, (8), pp. 700704.
    12. 12)
      • 12. Wang, T., Faria, D., Stevens, L.J., et al: ‘Flow patterns and draining films created by horizontal and inclined coherent water jets impinging on vertical walls’, Chem. Eng. Sci., 2013, 102, (1), pp. 585601.
    13. 13)
      • 13. Ruiqiang, Z., Shaojun, L., Xiaozhou, H.: ‘Effects of supply pressure and temperature of oil on jet characteristics of lubricating nozzles for an aviation gears’, J. Aerosp. Power, 2016, 31, (7), pp. 17771784.
    14. 14)
      • 14. Grigore, C., Virgil, S., Daniel, C.: ‘Analytical and numerical study of the nozzle jet’, Upb Sci. Bull., 2014, 76, (1), pp. 3744.
    15. 15)
      • 15. Khan, M.I.: ‘Effects of nozzle geometry on air flow jet and temperature distribution in an enclosed space’, Int. J. Ventilation, 2007, 5, (4), pp. 405415.
    16. 16)
      • 16. Chuanchang, G., Huang, D., Jianjiao, M.: ‘Orthogonal experimental on effect of geometrical parameters on self-excited inspiration pulsed jet nozzle performance’, J. Drainage Irrigation Mac. Eng., 2016, 34, (6), pp. 525531.
    17. 17)
      • 17. Ali, U., Hussaini, M.Y.: ‘High-fidelity numerical simulations of a round nozzle jet flow’, AIAA J., 2006, 10, p. 4016.
    18. 18)
      • 18. Li, G., Lian, Y., Mersch, M., et al: ‘Liquid-Gas Two-phase flow simulation for flat Fan nozzles’. ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th Int. Conf. Nanochannels, Microchannels, and Minichannels, Chicago, IL, USA, 2014, pp. V01CT23A005V01CT23A005.
    19. 19)
      • 19. Soos, M., Ehrl, L., Bäbler, M.U., et al: ‘Aggregate breakup in a contracting nozzle’, Langmuir ACS J. Surf. Colloids, 2010, 26, (1), pp. 1017.
    20. 20)
      • 20. Begenir, A., Tafreshi, H.V., Pourdeyhimi, B.: ‘Effect of nozzle geometry on hydroentangling water jets: experimental observations’, Tex. Res. J., 2004, 74, (2), pp. 178184.
    21. 21)
      • 21. Wilson, D.I., Köhler, H., Cai, L., et al: ‘Cleaning of a model food soil from horizontal plates by a moving vertical water jet’, Chem. Eng. Sci., 2015, 123, pp. 450459.
    22. 22)
      • 22. Orakwe, P.A., Johnson, D.A., Weckman, E.J.: ‘Examination of welding nozzle Jet flow at cold flow conditions’. ASME 2002 Joint U.S.-European Fluids Engineering Division Conf., Montreal, Canada, 2002, pp. 311.
    23. 23)
      • 23. Zelenak, M., Foldyna, J., Scucka, J., et al: ‘Visualisation and measurement of high-speed pulsating and continuous water jets’, Measurement, 2015, 72, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8971
Loading

Related content

content/journals/10.1049/joe.2018.8971
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address