Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Design and analysis of an active-controlled hydraulic low-frequency vibration isolator

This study proposes an active-controlled hydraulic low-frequency vibration isolator. The vibration isolator can achieve large equivalent mass and quasi-zero dynamic stiffness by combining the fluid inerter with the hydraulic active compensation. Thus, good vibration isolation performance at ultra-low frequency can be realised. The model for the dynamics of the device is set up. The principle of low-frequency vibration isolation is explicated. The natural frequency and its influencing factors are analysed. Finally, preliminary experimental research works are carried out. The results indicate that low-frequency vibration can be effectively isolated by the device proposed in this study.

References

    1. 1)
      • 15. Swift, S.J., Smith, M.C., Glover, A.R., et al: ‘Design and modelling of a fluid inerter’, Int. J. Control, 2013, 86, (11), pp. 20352051.
    2. 2)
      • 1. Paddan, G.S., Griffin, M.J.: ‘Evaluation of whole-body vibration in vehicles’, J. Sound Vib., 2002, 253, (1), pp. 195213.
    3. 3)
      • 6. Araki, Y., Kimura, K., Asia, T., et al: ‘Integrated mechanical and material design of quasi-zero-stiffness vibration isolator with superelastic Cu-Al-Mn shape memory alloy bars’, J. Sound Vib., 2015, 358, pp. 7483.
    4. 4)
      • 2. Karen, I., Kaya, N., Ozturk, F., et al: ‘Optimisation of vehicle engine mount system using simulation-based design approach’, Int. J. Veh. Des., 2010, 52, (52), pp. 3853(16).
    5. 5)
      • 14. Henderson, J.P., Plummer, A., Johnston, N.: ‘An electro-hydrostatic actuator for hybrid active-passive vibration isolation’, Int. J. Hydromechatronics, 2018, 1, (1), pp. 4771.
    6. 6)
      • 3. Alabuzhev, P.M., Rivin, E.I.: ‘Vibration protection and measuring systems with quasi-zero stiffness’ (CRC Press, Bosa Roca, 1989).
    7. 7)
      • 7. Virgin, L.N., Santillan, S.T., Plaut, R.H.: ‘Vibration isolation using extreme geometric nonlinearity’, J. Sound Vib., 2008, 315, (3), pp. 721731.
    8. 8)
      • 5. Karaca, H.E., Karaman, I., Chumlyakov, Y.I., et al: ‘Compressive response of a single crystalline CoNiAl shape memory alloy’, Scr. Mater., 2004, 51, (3), pp. 261266.
    9. 9)
      • 9. Hirose, M., Matsushige, S., Buma, S., et al: ‘Toyota electronic modulated air suspension system for the 1986 Soarer’, IEEE Trans. Ind. Electron., 1988, 35, (2), pp. 193200.
    10. 10)
      • 10. Lin, J.S., Kanellakopoulos, I.: ‘Nonlinear design of active suspensions’, IEEE Control Syst., 2002, 17, (3), pp. 4559.
    11. 11)
      • 12. Huimin, W.: ‘Elementary fluid mechanics’ (Tsinghua University Press, Beijing, 2005).
    12. 12)
      • 11. Daxian, C.: ‘Mechanical design manual’ (Chemical Industry Press, Beijing, 2010).
    13. 13)
      • 13. Ting, W., Linxiang, W.: ‘Design and performance analysis of a composite low-frequency vibration isolator’, Vib. Shock, 2017, 36, (19), pp. 232235.
    14. 14)
      • 8. Yokoya, Y., Kizu, R., Kawaguchi, H., et al: ‘Integrated control system between active control suspension and four wheel steering for the 1989 CELICA’, SAE Technical Paper 901748, 1990.
    15. 15)
      • 4. Ahn, K.K.: ‘Active pneumatic vibration isolation system using negative stiffness structures for a vehicle seat’, J. Sound Vib., 2014, 333, (5), pp. 12451268.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8955
Loading

Related content

content/journals/10.1049/joe.2018.8955
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address