Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Small-signal stability analysis for the multi-terminal VSC MVDC distribution network; a review

The stable operation and control of the proposed terrestrial multi-terminal Voltage Source Converter (VSC) medium voltage DC (MVDC) distribution network is a remarkable motivation towards developing the future universal DC grid interconnecting the low voltage DC systems on one side and the high voltage DC systems on the other. The small-signal stability analysis are important in designing these power electronic based systems (PEBS). In this study, small-signal stability approaches for PEBS are reviewed with the aim of identifying suitable methods for the proposed MVDC distribution network. It is established that the impedance-based methods are suitable for local stability analysis complementing very well with the state-space modelling-eigenvalue analysis method best for global stability analysis. The Lyapunov linearisation method offers simple, adaptable, and accurate small-signal and large-signal stability study. On the other hand, the bifurcation analysis is an emerging non-linear approach with promising efficiency and precision. In conclusion, there is no single small-signal stability criterion that encompass an acceptable level of accuracy, adaptability, and efficiency. Thus, the impedance-based methods combined with state-space modelling-eigenvalue analysis, Lyapunov linearisation, and bifurcation theory can be suitable small-signal stability approaches for the multi-terminal MVDC distribution network.

References

    1. 1)
      • 65. Shuai, Z., Hu, Y., Peng, Y., et al: ‘Dynamic stability analysis of synchronverter-dominated microgrid based on bifurcation theory’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 74677477.
    2. 2)
      • 12. Reed, G.F., Grainger, B.M., Sparacino, A.R., et al: ‘Ship to grid: medium-voltage DC concepts in theory and practice’, IEEE Power Energy Mag.., 2012, 10, (6), pp. 7079.
    3. 3)
      • 62. Pai, M., Sauer, P., Lesieutre, B.: ‘Static and dynamic nonlinear loads and structural in power systems’, Proc. IEEE, 1995, 83, (11), pp. 15621572.
    4. 4)
      • 43. Sudhoff, S.D., Glover, S.F.: ‘Three-dimensional stability analysis of DC power electronics based systems’. Proc. IEEE 31st Annual Power Electronics Specialists Conf., Galway, Ireland, June 2000, vol. 1, pp. 101106.
    5. 5)
      • 35. Chiang, H.D.: ‘Direct methods for stability analysis of electric power systems’ (John Wiley & Sons Inc, New Jersey, 2011).
    6. 6)
      • 1. Reed, G.F., Grainger, B.M., Bassi, H., et al: ‘Analysis of high capacity power electronic technologies for integration of green energy management’. Proc. IEEE PES Transmission and Distribution Conf. and Exposition, New Orleans, USA, April 2010, pp. 110.
    7. 7)
      • 25. Nnachi, A.F., Munda, J.L., Nicolae, D.V., et al: ‘VSC HVDC transmission corridor: an option for PV power injection and AC network stability support’. Proc. IEEE Int. Conf. on Industrial Technology (ICIT), Cape Town, South Africa, February 2013, pp. 17871792.
    8. 8)
      • 56. Jian, M., Zhao, D.Y., Pei, Z.: ‘Eigenvalue sensitivity analysis for dynamic power system’. Proc. Int. Conf. on Power System Technology, Chingqing, China, October 2006, pp. 17.
    9. 9)
      • 16. TNEI: ‘MVDC technology study – market opportunities and economic impact’ (TNEI, Glasgow, Scotland, 2015), pp. 1126.
    10. 10)
      • 54. Wang, S., Su, J., Yang, X., et al: ‘A review on the small signal stability of microgrid’. Proc. IEEE 8th Int. Power Electronics and Motion Control Conf. (IPEMC-ECCE Asia), Hefei, China, May 2016, pp. 17931798.
    11. 11)
      • 31. IEEE Std 1573-2003: ‘Recommended practice for electronic power subsystems: parameters, interfaces, elements, and performance’, 2004.
    12. 12)
      • 33. Smithson, S.C., Williamson, S.S.: ‘Constant power loads in more electric vehicles-an overview’. Proc. IECON-38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, Canada, October 2012, pp. 29142922.
    13. 13)
      • 4. Taylor, E., Korytowski, M., Reed, G.: ‘Voltage transient propagation in AC and DC datacenter distribution architectures’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, USA, September 2012, pp. 19982004.
    14. 14)
      • 45. Amin, M., Molinas, M.: ‘Small-signal stability assessment of power electronics based power systems: a discussion of impedance and eigenvalue-based methods’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 50145030.
    15. 15)
      • 6. Baran, M.E., Mahajan, N.R.: ‘DC distribution for industrial systems: opportunities and challenges’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 15961601.
    16. 16)
      • 3. Stieneker, M., Mortimer, B.J., Averous, N.R., et al: ‘Optimum design of medium-voltage DC collector grids depending on the offshore-wind-park power’. Proc. IEEE Symp. on Power Electronics and Machines for Wind and Water Applications, Milwaukee, USA, July 2014, pp. 18.
    17. 17)
      • 36. Gibbard, M.J., Pourbeik, P., Vowles, D.J.: ‘Small-signal stability control and dynamic performance of power systems’ (University of Adeidelaide Presss, Adelaide, 2015).
    18. 18)
      • 5. Stieneker, M., De Doncker, R.W.: ‘Medium-voltage DC distribution grids in urban areas’. Proc. IEEE 7th Int. Symp. on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, Canada, June 2016, pp. 17.
    19. 19)
      • 41. Riccobono, A., Santi, E.: ‘Comprehensive review of stability criteria for DC power distribution systems’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 35253635.
    20. 20)
      • 22. Chaudhary, S.K., Teodorescu, R., Rodriguez, P.: ‘Wind farm grid integration using VSC based HVDC transmission – an overview’. Proc. IEEE Energy 2030 Conf., Atlanta, USA, November 2008, pp. 17.
    21. 21)
      • 51. Riccobono, A., Santi, E.: ‘A novel passivity-based stability criterion (PBSC) for switching converter DC distribution systems’. Proc. 27th Annual IEEE Applied Power Electronics Conf. and Exposition (APEC), Orlando, USA, February 2012, pp. 25602567.
    22. 22)
      • 26. Bathurst, G., Hwang, G., Tejwani, L.: ‘MVDC – the new technology for distribution networks’. Proc. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, February 2015, pp. 15.
    23. 23)
      • 24. Edrah, M., Lo, K.L., Anaya-Lara, O., et al: ‘Impact of DFIG based offshore wind farms connected through VSC-HVDC link on power system stability’. Proc. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, February 2015, pp. 17.
    24. 24)
      • 34. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill Inc, New York, 1994).
    25. 25)
      • 52. Harnefors, L., Wang, X., Yepes, A.G., et al: ‘Passivity-based stability assessment of grid-connected VSCs – an overview’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (1), pp. 116125.
    26. 26)
      • 66. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: ‘MATCONT; A MATLAB package for numerical bifurcation analysis of ODEs’, ACM Trans. Math. Softw., 2003, 29, (2), pp. 141164.
    27. 27)
      • 61. Ajjarapu, V., Lee, B.: ‘Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system’, IEEE Trans. Power Syst., 1992, 7, (1), pp. 424431.
    28. 28)
      • 47. Rygg, A., Molinas, M.: ‘Apparent impedance analysis; a small-signal method for stability analysis of power electronic-based systems’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (4), pp. 14741486.
    29. 29)
      • 9. Gómez-expósito, A., Mauricio, J.M., Maza-ortega, J.M.: ‘VSC-based MVDC railway electrification system’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 422431.
    30. 30)
      • 63. Widyan, M.S.: ‘Controlling chaos and bifurcations of SMIB power system experiencing SSR phenomenon using SSSC’, Int. J. Electr. Power Energy Syst., 2013, 49, (1), pp. 6675.
    31. 31)
      • 7. Sparacino, A.R.: ‘Design and simulation of a DC electric vehicle charging station interconnected with an MVDC infrastructure’. MSc Thesis, University of Pittsburgh, 2012.
    32. 32)
      • 29. Stieneker, M., Butz, J., Rabiee, S., et al: ‘Medium-voltage DC research grid Aachen’. Proc. Int. ETG Congress, Bonn, Germany, November 2015, pp. 17.
    33. 33)
      • 37. Smith, K., Galloway, S., Burt, G.: ‘A review of design criteria for low voltage DC distribution stability’. Proc. 51st Int. Universities Power Engineering Conf. (UPEC), Coimbra, Portugal, September 2016, pp. 16.
    34. 34)
      • 39. Bajracharya, C., Molinas, M., Suul, J.A., et al: ‘Understanding of tuning techniques of converter controllers for VSC-HVDC’. Proc. Nordic Workshop on Power and Industrial Electronics (NORPIE), Trondheim, Norway, August 2008, pp. 16.
    35. 35)
      • 55. Kalcon, G.O., Adam, G.P., Anaya-Lara, O., et al: ‘Small-signal stability analysis of multi-terminal VSC-based DC transmission systems’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18181830.
    36. 36)
      • 42. Sudhoff, S.D., Glover, S.F., Lamm, P.T., et al: ‘Admittance space stability analysis of power electronic systems’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (3), pp. 965973.
    37. 37)
      • 15. Reed, G.F., Grainger, B.M., Sparacino, A.R., et al: ‘Medium voltage DC technology developments, applications and trends’. Proc. Cigre US National Committee, Kansas City, USA, July 2012, pp. 17.
    38. 38)
      • 28. Grainger, B.M.: ‘Medium voltage DC network modeling and analysis with preliminary studies for optimized converter configuration through PSCAD simulation environment’. Msc Thesis, University of Pittsburgh, 2011.
    39. 39)
      • 38. Ogata, K.: ‘Modern control engineering’ (Pearson Education Inc, New Jersey, 2010).
    40. 40)
      • 20. US DOE: ‘Power electronics for distributed energy systems and transmission and distribution applications’ (DOE, Oak Ridge, TN, USA, 2005), pp. 1182.
    41. 41)
      • 60. Che, Y., Xu, J., Shi, K., et al: ‘Stability analysis of aircraft power systems based on a unified large signal model’, Energies, 2017, 10, (11), pp. 115.
    42. 42)
      • 11. IEEE Std 1709-2010: ‘Recommended practice for 1 to 35 kV medium-voltage DC power systems on ships’, 2010.
    43. 43)
      • 8. Sparacino, A.R., Grainger, B.M., Kerestes, R.J., et al: ‘Design and simulation of a DC electric vehicle charging station connected to a MVDC infrastructure’. Proc. EEE Energy Conversion Congress and Exposition (ECCE), Raleigh, USA, September 2012, pp. 11681175.
    44. 44)
      • 68. Zadeh, M.K., Gavagsaz-ghoachani, R., Martin, J., et al: ‘Discrete-time tool for stability analysis of DC power electronics based cascaded systems’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 652667.
    45. 45)
      • 50. Amin, M., Molinas, M.: ‘Impedance-based stability analysis of VSC-based HVDC system’. Proc. IEEE Eindhoven PowerTech, Eindhoven, Netherlands, June/July 2015, pp. 16.
    46. 46)
      • 18. Yang, W., Zhang, A., Song, S., et al: ‘Comparative study on radial topology 10 kV AC and ±10 kV DC power distribution network’. Proc. Chinese Control and Decision Conf. (CCDC), Yinchuan, China, May 2016, pp. 62166221.
    47. 47)
      • 46. Rygg, A., Amin, M., Molinas, M., et al: ‘Apparent impedance analysis: a new method for power system stability analysis’. Proc. IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, Norway, June 2016, pp. 17.
    48. 48)
      • 14. Riccobono, A., Cupelli, M., Monti, A., et al: ‘Stability of shipboard DC power distribution’, IEEE Electrification Mag., 2017, 5, (3), pp. 5567.
    49. 49)
      • 32. Emadi, A., Khaligh, A., Rivetta, C.H., et al: ‘Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives’, IEEE Trans. Veh. Technol., 2006, 55, (4), pp. 11121125.
    50. 50)
      • 2. De Doncker, R.W.: ‘Power electronic technologies for flexible DC distribution grids’. Proc. Int. Power Electronics Conf., Hiroshima, Japan, May 2014, pp. 736743.
    51. 51)
      • 10. Hinz, A., Stieneker, M., De Doncker, R.W.: ‘Impact and opportunities of medium-voltage DC grids in urban railway systems’. Proc. 18th European Conf. on Power Electronics and Applications, Karlsruhe, Germany, September 2016, pp. 110.
    52. 52)
      • 53. Zadeh, M.K., Amin, M., Suul, J.A., et al: ‘Small-signal stability study of the cigre DC grid test system with analysis of participation factors and parameter sensitivity of oscillatory modes’. Proc. Power Systems Computation Conf., Wroclaw, Poland, August 2014, pp. 18.
    53. 53)
      • 57. Rudraraju, S.R., Srivastava, A.K., Srivastava, S.C., et al: ‘Small signal stability analysis of a shipboard MVDC power system’. Proc. IEEE Electric Ship Technologies Symp. (ESTS), Baltimore, USA, April 2009, pp. 135141.
    54. 54)
      • 21. Simiyu, P., Xin, A., Bitew, G.T., et al: ‘Modelling and control of a VSC medium-voltage DC distribution network with DFIG wind farm’. Proc. The 6th Int. Conf. on Renewable Power Generation (RPG), Wuhan, China, October 2017.
    55. 55)
      • 48. Zhang, X., Ruan, X., Tse, C.K.: ‘Impedance-based local stability criterion for DC distributed power systems’, IEEE Trans. Circuits Syst. Regul. Pap., 2015, 62, (3), pp. 916925.
    56. 56)
      • 59. Du, W., Zhang, J., Zhang, Y., et al: ‘Stability criterion for cascaded system with constant power load’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 18431851.
    57. 57)
      • 49. Riccobono, A., Santi, E.: ‘Stability analysis of an all-electric ship MVDC power distribution system using a novel passivity-based stability criterion’. Proc. IEEE Electric Ship Technologies Symp. (ESTS), Arlington, USA, April 2013, pp. 411419.
    58. 58)
      • 17. Kusic, G.L., Reed, G.F., Svensson, J., et al: ‘A case for medium voltage DC for distribution circuit applications’. Proc. IEEE/PES Power Systems Conf. and Exposition, Phoenix, USA, May 2011, pp. 17.
    59. 59)
      • 19. Joos, G., Ooi, B.T., McGillis, D., et al: ‘The potential of distributed generation to provide ancillary services’. Proc. Power Engineering Society Summer Meeting, Seatle, USA, July 2000, pp. 17621767.
    60. 60)
      • 64. Kuru, L., Kuru, E., Yalcin, M.A.: ‘An application of chaos and bifurcation in nonlinear dynamical power systems’. Proc. 2nd Int. IEEE Conf., Varna, Bulgaria, August 2004, pp. 1115.
    61. 61)
      • 44. Middlebrook, R.D.: ‘Null double injection and the extra element theorem’, IEEE Trans. Educ., 1989, 32, (3), pp. 167180.
    62. 62)
      • 40. Riccobono, A., Santi, E.: ‘Comprehensive review of stability criteria for DC distribution systems’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, USA, September 2012, pp. 39173925.
    63. 63)
      • 30. Mura, F., De Doncker, R.W.: ‘Design aspects of a medium-voltage direct current (MVDC) grid for a university campus’. 8th Int. Conf. on Power Electronics – ECCE Asia, Jeju, South Korea, May 2011, pp. 23592366.
    64. 64)
      • 13. Javaid, U., Dujic, D., Van Der Merwe, W.: ‘MVDC marine electrical distribution: are we ready?Proc. IECON-41st Annual Conf. of the IEEE Industrial Electronics Society, Yokohama, Japan, November 2015, pp. 823828.
    65. 65)
      • 23. Chen, Z.: ‘Issues of connecting wind farms into power systems’. Proc. IEEE/PES Transmission & Distribution Conf. & Exposition: Asia and Pacific, Dalian, China, August 2005, pp. 16.
    66. 66)
      • 58. Raza, M., Prieto-Araujo, E., Gomis-Bellmunt, O.: ‘Small signal stability analysis of offshore AC network having multiple VSC-HVDC systems’, IEEE Trans. Power Deliv., 2018, 33, (2), pp. 830839.
    67. 67)
      • 67. Zadeh, M.K., Gavagsaz-Ghoachani, R., Martin, J.P., et al: ‘Discrete-time modeling, stability analysis and active stabilization of DC distribution systems with multiple constant power loads’, IEEE Trans. Ind. Appl., 2016, 52, (6), pp. 48884898.
    68. 68)
      • 27. Reed, G.F., Grainger, B.M., Korytowski, M.J., et al: ‘Modeling, analysis and validation of a preliminary design for a 20 kV medium voltage DC substation’. Proc. IEEE EnergyTech, Cleveland, USA, May 2011, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8842
Loading

Related content

content/journals/10.1049/joe.2018.8842
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address