Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Quick recovery control strategy for zhou shan VSC-MTDC

Zhou Shan voltage source converter multi-terminal HVDC system (VSC-MTDC) enhances the receptiveness of wind power and improves the reliability of power supply. Electrical energy transfers flexibly between the islands in Zhou Shan. Restricted by the half-bridge sub module and disconnector, Zhou Shan VSC-MTDC cannot realies fast DC fault recovery. In order to solve this problem, damping fast recovery system and DC breaker are added. Meanwhile, the corresponding control strategy is proposed. It is verified by experimental results that the control strategy will realise fast DC fault recovery and improve the reliability of Zhou Shan VSC-MTDC dramatically.

References

    1. 1)
      • 4. Jacobson, D.A.N., Wang, P., Karawita, C., et al: ‘Planning the next Nelson river HVDC development phase considering LCC vs. VSC technology’. CIGRE Session, Paris, France, 2012.
    2. 2)
      • 6. Debnath, S., Qin, J., Bahrani, B., et al: ‘Operation, control, and applications of the modular multilevel converter a review’, IEEE Trans. Power Electron., 2014, 30, (1), pp. 3753.
    3. 3)
      • 5. Wang, X., Bao, H., Ye, J., et al: ‘High-voltage DC flexible technology and its demonstration engineering’, Power Supply, 2011, 2, (2), pp. 2326.
    4. 4)
      • 10. Wang, K., Li, J., Tian, J., et al: ‘Control strategy of quick recovery system with multi-terminals HVDC DC fault’, Autom. Electr. Power Syst., 2017, 34, (8), pp. 27.
    5. 5)
      • 8. Ding, Y., Su, J., Zhou, J.: ‘Analysis on fault current limitation and self-recovery of MMC based on clamp double sub-module’, Autom. Electr. Power Syst., 2014, 38, (1), pp. 97103.
    6. 6)
      • 9. Que, B., Li, J., Wang, N., et al: ‘Arm damping based quick recovery scheme for flexible HVDC fault’, Autom. Electr. Power Syst., 2016, 40, (24), pp. 8591.
    7. 7)
      • 12. Jiang, D., Zhang, C., Zheng, H., et al: ‘A scheme for current-limiting hybrid DC circuit breaker’, Autom. Electr. Power Syst., 2014, 38, (4), pp. 6571.
    8. 8)
      • 1. Tang, G., He, Z., Pang, H.: ‘Research, application and development of VSC-HVDC engineering technology’, Autom. Electr. Power Syst., 2013, 37, (15), pp. 314.
    9. 9)
      • 2. Xu, Z., Chen, H.: ‘Review and applications of VSC HVDC’, High Volt. Eng., 2007, 33, (1), pp. 110.
    10. 10)
      • 3. Hu, H., Li, J., Yang, W., et al: ‘The development and prospect of HVDC flexible technology’, Electr. Power Constr., 2011, 32, (5), pp. 6266.
    11. 11)
      • 7. Meng, X., Li, K., Wang, Z., et al: ‘A hybrid MMC topology and its DC-fault ride-through capability analysis when applied to MTDC system’, Autom. Electr. Power Syst., 2015, 39, (24), pp. 7279.
    12. 12)
      • 11. Liu, G., Xu, F., Xu, Z.: ‘An assembled HVDC breaker for HVDC grid’, Power Syst. Technol., 2016, 40, (1), pp. 7077.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8810
Loading

Related content

content/journals/10.1049/joe.2018.8810
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address