Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Multi-hierarchy control strategy in abc coordinate for modular multilevel matrix converter in fractional frequency transmission system

This paper proposes a multi-hierarchy control strategy in abc coordinate for modular multilevel matrix converter (M3C) in fractional frequency transmission system (FFTS). The proposed control strategy avoids complicated coordinate transformations when the traditional control strategies based on coordinate transformation are adopted. Four hierarchies are designed to balance the capacitor voltages. In different hierarchies, the capacitor voltage ripples have different frequencies. According to this characteristic, different bandwidths of filters are adopted in different hierarchies, resulting in different control speeds among the four hierarchies. This will not only speed up the control but also assure the control accuracy. Simulation results verify the feasibility and effectiveness of the proposed strategy.

References

    1. 1)
      • 11. Erickson, R., AL-Naseem, O.: ‘A new family of matrix converters’. Industrial Electronics Society, 2001. IECON'01: The 27th Annual Conf. of the IEEE, Denver, USA, December 2001, pp. 15151520.
    2. 2)
      • 10. Majumder, R., Auddy, S., Berggren, B., et al: ‘An alternative method to build DC switchyard with hybrid DC breaker for DC grid’, IEEE Trans. Power Del., 2017, 32, (2), pp. 713722.
    3. 3)
      • 20. Liu, S., Wang, X., Meng, Y., et al: ‘A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system’, IEEE trans. Power Del., 2017, 32, (4), pp. 21112121.
    4. 4)
      • 4. Ning, L., Wang, X., Teng, Y.: ‘Experiment on wind power integration grid via fractional frequency transmission system’. Proc. 4th Int. Conf. Electric Utility Deregulation Restruct. Power Technol. (DRPT), Weihai, August 2011, pp. 444449.
    5. 5)
      • 14. Miura, Y., Mizutani, T., Ito, M., et al: ‘Modular multilevel matrix converter for low frequency AC transmission’. Power Electronics and Drive Systems (PEDS), 10th Int. Conf. on, IEEE, Kitakyushu, Japan, June 2013, pp. 10791084.
    6. 6)
      • 16. Liu, S., Wang, X., Meng, Y., et al: ‘A decoupled control strategy of modular multilevel matrix converter for fractional frequency transmission system’, IEEE Trans. Power Del., 2017, 32, (4), pp. 21112121.
    7. 7)
      • 6. Li, J., Zhang, X.: ‘Small signal stability of fractional frequency transmission system with offshore wind farms’, IEEE Trans. Sustan. Energy, 2016, 7, (4), pp. 15381546.
    8. 8)
      • 17. Angkititrakul, S., Erickson, R.W.: ‘Control and implementation of a new modular matrix converter’. Proc. IEEE Applied Power Electronics Conf. and Exposition, Anaheim, USA, 2004, vol. 2, pp. 813819.
    9. 9)
      • 8. Lim, F.N., Fleming, R.J.: ‘Space charge accumulation in power cable XPLE insulation’, IEEE Trans. Dielectr. Electr. Insul., 1999, 6, (3), pp. 273281.
    10. 10)
      • 12. Li, F., Wang, G.: ‘Steady-state analysis of sub-modular capacitor voltage ripple in modular multilevel matrix converter’, Proc. CSEE, 2013, 33, (24), pp. 5258(in chinese).
    11. 11)
      • 7. Liu, S., Wang, X., Ning, L., et al: ‘Integrating offshore wind power Via fractional frequency transmission system’, IEEE Trans. Power Del., 2017, 32, (3), pp. 12531261.
    12. 12)
      • 9. Funaki, T., Matsuura, K.: ‘Feasibility of the low frequency AC transmission’. Power Engineering Society Winter Meeting, Singapore, January 2000, pp. 26932698.
    13. 13)
      • 2. Wang, X., Cao, C., Zhou, Z.: ‘Experiment on fractional frequency transmission system’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 372377.
    14. 14)
      • 3. Nan, Q., Shi, Y., Zhao, X., et al: ‘Offshore wnd farm connection with low frequency AC transmission technology’. Power & Energy Society General Meeting, Calgary, Canada, July 2009, pp. 18.
    15. 15)
      • 15. Ma, J., Dahidah, M., Pickert, V., et al: ‘Modular multilevel matrix converter for offshore low frequency AC transmission system’. Industrial Electronics (ISIE), 2017 IEEE 26th Int. Symp. on, Edinburgh, UK, June 2017, pp. 768774.
    16. 16)
      • 18. Huang, L., Yang, X., Zhang, B., et al: ‘Hierarchical model predictive control of modular multilevel matrix converter for low frequency AC transmission’. Proc. 9th Int. Conf. Power Electronics ECCE Asia, Seoul, South Korea, June 2015, pp. 927933.
    17. 17)
      • 19. Kammerer, F., Kolb, J., Braun, M.: ‘Fully decoupled current control and energy balancing of the modular multilevel matrix converter’. Proc. 15th Int. Power Electronics Motion Control Conf., Novi Sad, Serbia, 2012, pp. LS2a.3-1LS2a.3-8.
    18. 18)
      • 13. Kawamura, W., Hagiwara, M., Akagi, H.: ‘Control and experiment of a modular multilevel cascade converter based on triple-star bridge cells’, IEEE Trans. Ind. Appl., 2014, 50, (5), pp. 35363548.
    19. 19)
      • 1. Wang, X., Wang, X.: ‘Feasibility study of fractional frequency transmission system’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 962967.
    20. 20)
      • 21. Ou, Z., Wang, G., Zhang, L.: ‘Modular multilevel converter control strategy based on arm current control under unbalanced grid conditon’, IEEE Trans. Power Electron., 2018, 33, (5), pp. 38263836.
    21. 21)
      • 5. Mau, C.N., Rudion, K., Orths, A., et al: ‘Grid connection of offshore wind farm based DFIG with Low frequency AC transmission system’. IEEE Power and Energy Society General Meeting, San Diego, USA, November 2012, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8740
Loading

Related content

content/journals/10.1049/joe.2018.8740
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address