Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Hierarchical control of parallel voltage source inverters in AC microgrids

Here, a distributed hierarchical control strategy is proposed for the parallel operating of voltage source inverters (VSIs) in AC microgrids (MGs). For the output voltage control of a VSI, conventional double-loop proportional-integral (PI) control method has deteriorative performance under disturbance parameters conditions and has a narrow range of stable operation. Here, the sliding mode control (SMC)-based inner-loop current control (level0) and mixed H 2/H -based outer-loop voltage control (level1) are proposed for the output voltage control of a VSI, which combines the advantages of robustness and fast transient response. The droop control (level2) is applied to avoid circulating currents among the VSIs without using any critical communication between them. The multi-agent system (MAS)-based distributed economic automatic generation control (EAGC) and distributed automatic voltage control (AVC) (level3) are proposed to restore the voltage magnitude and frequency deviations caused by droop controller and achieve optimal active power dispatch at the same time.

References

    1. 1)
      • 8. Lu, X., Guerrero, J.M., Sun, K., et al: ‘Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids’, IEEE Trans. Smart Grid, 2014, 5, pp. 683692.
    2. 2)
      • 7. Wang, H.Y., Zhou, Z.C., Yuan, Q.F., et al: ‘A hierarchical control of microgrid based on droop controlled voltage source converter’. 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Kowloon, China, 2013, pp. 14.
    3. 3)
      • 5. Zhao, Z., Yang, P., Guerrero, J.M., et al: ‘Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid’, IEEE Trans. Power Electron., 2016, 31, pp. 59745991.
    4. 4)
      • 9. Li, Z.W., Zang, C.Z., Zeng, P., et al: ‘Analysis of multi-agent-based adaptive droop-controlled AC microgrids with PSCAD: modeling and simulation’, J. Power Electron., 2015, 15, pp. 455468.
    5. 5)
      • 6. Tian, P., Xiao, X., Wang, K., et al: ‘A hierarchical energy management system based on hierarchical optimization for microgrid community economic operation’, IEEE Trans. Smart Grid, 2016, 7, pp. 22302241.
    6. 6)
      • 12. Yu, K., Ai, Q., Wang, S.Y., et al: ‘Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model’, IEEE Trans. Smart Grid, 2016, 7, pp. 695705.
    7. 7)
      • 11. Sun, X.F., Hao, Y.C., Wu, Q.F., et al: ‘A multifunctional and wireless droop control for distributed energy storage units in islanded AC microgrid applications’, IEEE Trans. Power Electron., 2017, 32, pp. 736751.
    8. 8)
      • 3. Vasquez, J.C., Guerrero, J.M., Savaghebi, M., et al: ‘Modeling, analysis, and design of stationary-reference-frame droop-controlled parallel three-phase voltage source inverters’, IEEE Trans. Ind. Electron., 2013, 60, pp. 12711280.
    9. 9)
      • 14. Li, Z., Zang, C., Zeng, P., et al: ‘Agent-based distributed and economic automatic generation control for droop-controlled AC microgrids’, IET Gener. Transm. Distrib., 2016, 10, pp. 36223630.
    10. 10)
      • 16. Yinliang, X., Wenxin, L.: ‘Novel multiagent based load restoration algorithm for microgrids’, IEEE Trans. Smart Grid, 2011, 2, pp. 152161.
    11. 11)
      • 10. Li, Z., Zang, C., Zeng, P., et al: ‘H2/H∞ control for grid feeding converter considering system uncertainty’, Int. J. Electron., 2016, 104, pp. 775791.
    12. 12)
      • 2. Planas, E., Gil-de-Muro, A., Andreu, J., et al: ‘General aspects, hierarchical controls and droop methods in microgrids: a review’, Renew. Sustain. Energy Rev., 2013, 17, pp. 147159.
    13. 13)
      • 13. d. Souza, W.F., Severo-Mendes, M.A., Lopes, L.A.C.: ‘Power sharing control strategies for a three-phase microgrid in different operating condition with droop control and damping factor investigation’, IET Renew. Power Gener., 2015, 9, pp. 831839.
    14. 14)
      • 4. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, pp. 158172.
    15. 15)
      • 1. Li, Z., Zang, C., Zeng, P., et al: ‘Control of a grid-forming inverter based on sliding mode and mixed H2 /H∞ control’, IEEE Trans. Ind. Electron., 2017, 64, pp. 38623872.
    16. 16)
      • 15. Yang, S.P., Tan, S.C., Xu, J.X.: ‘Consensus based approach for economic dispatch problem in a smart grid’, IEEE Trans. Power Syst., 2013, 28, pp. 44164426.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8620
Loading

Related content

content/journals/10.1049/joe.2018.8620
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address