Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Simplified approach of maximum electric field distribution on the ground near HVAC–HVDC shared tower transmission lines

This study extends the superposition method proposed by the Electric Power Research Institute to calculate electric field distribution on the ground near high voltage alternating current-high voltage direct current (HVAC-HVDC) shared tower transmission lines under ultra high voltage (UHV). Maximum electric field on the ground can be easily superposed by electric field when two circuits act separately, and when one circuit acts, thhe other circuit is regarded as ground wires. The ac field is calculated by method of images. The dc field is calculated by a finite element method (FEM). A precise time-domain FEM is used to calculate the hybrid electric field for comparison. Dispersion between results of superposition and time-domain FEM confirms that the superposition method is less time consuming and can satisfy engineering precision.

References

    1. 1)
      • 1. Wei, L., Bo, Z., Jinliang, H., et al: ‘Calculation of the ion flow field of AC–DC hybrid transmission lines’, IET Gener. Trans. Distrib., 2009, 3, (10), pp. 911918.
    2. 2)
      • 19. Janischewskyj, W., Cela, G.: ‘Finite element solution for electric fields of coronating DC transmission lines’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (3), p. 1000.
    3. 3)
      • 8. Tadasu, T., Tsutomu, T., Tadashi, K.: ‘Calculation of ion flow fields of HVDC transmission lines by the finite element method’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (12), pp. 48024810.
    4. 4)
      • 6. Jie, L., Jun, Z., Jihuan, T., et al: ‘Analysis of electric field, ion flow field, and corona loss of same-tower double-circuit HVDC lines using improved FEM’, IEEE Trans. Power Deliv., 2008, 24, (1), pp. 482483.
    5. 5)
      • 15. Maruvad, P.S., Wasyl, J.: ‘Analysis of corona losses on DC transmission lines: part II—bipolar lines’, IEEE Trans. Power Appar. Syst., 1969, PAS-88, (10), pp. 14761491.
    6. 6)
      • 13. Qiang, S., Jian, W., Haiping, L., et al: ‘Analysis of coupling characteristics of hybrid electric field I the 750 kV HVAC and ±800 kV HVDC parallel transmission line’. Proc. IEEE 5th Int. Symp. Electromagnetic Compatibility, Beijing.
    7. 7)
      • 3. Clairmont, B.A., Johnson, G.B., Zaffanella, L.E.: ‘The effect of HVAC–HVDC line separation in a hybrid corridor’, IEEE Trans. Power Deliv., 1989, 4, (2), pp. 13381350.
    8. 8)
      • 5. Mazen, A., Zakariya, A.: ‘A finite-element analysis of bipolar ionized field’, IEEE Trans. Ind. Appl., 1995, 31, (3), pp. 477483.
    9. 9)
      • 12. Bo, Z., Han, Y., Jinliang, H., et al: ‘Computation of ion-flow field near the metal board house under the HVDC bipolar transmission line’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 12331234.
    10. 10)
      • 2. High Voltage Transmission Research Center (A Research Facility of the Electric Power Research Institute): ‘Hybrid transmission corridor study’ (New York Power Authority, New York, 1991).
    11. 11)
      • 10. Xiangxian, Z., Xiang, C., Teibing, L., et al: ‘A time-efficient method for the simulation of ion flow field of the AC–DC hybrid transmission lines’, IEEE Trans. Mag., 2012, 48, (2), pp. 731734.
    12. 12)
      • 17. Guodong, H., Jiangjun, R., Zhiye, D., et al: ‘Highly stable upwind FEM for solving ionized field of HVDC transmission line’, IEEE Trans. Mag., 2012, 48, (2), pp. 719722.
    13. 13)
      • 11. Han, Y., Jinliang, H., Bo, Z., et al: ‘Finite volume-based approach for the hybrid ion-flow field of UHVAC and UHVDC transmission lines in parallel’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 28092820.
    14. 14)
      • 4. Wei, L., Bo, Z.: ‘Ion flow field calculation of multi-circuits DC transmission lines’. Proc. Int. Conf. High Voltage Engineering and Application, Chongqing, China, 2008, pp. 245248.
    15. 15)
      • 14. Ming, Y., Kuffel, E.: ‘A new algorithm for calculating HVDC corona with the presence of wind’, IEEE Trans. Mag., 1992, 28, (5), pp. 28022804.
    16. 16)
      • 18. Davis, J.L., Hoburg, J.F.: ‘HVDC transmission line computations using finite element and characteristics method’, J. Electrostat., 1986, 18, (1), pp. 122.
    17. 17)
      • 16. Yongzan, Z., Xiang, C., Tiebing, L., et al: ‘High efficiency FEM calculation of the ionized field under HVDC transmission lines’, IEEE Trans. Mag., 2012, 48, (2), pp. 743746.
    18. 18)
      • 20. Jihuan, T., Jun, Z., Jie, L., et al: ‘Calculation of total electric field and ionic current density of double-circuit HVDC transmission lines’, Power Syst. Technol., 2008, 32, (2), pp. 6165.
    19. 19)
      • 9. Zhenguo, W., Tiebing, L., Xuebao, L.: ‘Predictive analysis of ion flow field at the ground level under HVAC and HVDC hybrid transmission lines’. Proc. IEEE Conf. Electrical Insulation and Dielectric Phenomena, Des Moines, USA, October 2014.
    20. 20)
      • 7. Feng, T., Zhanqing, Y., Rong, Z., et al: ‘Resultant electric field reduction with shielding wires under bipolar HVDC transmission lines’, IEEE Trans. Mag., 2014, 50, (2), pp. 221224.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8342
Loading

Related content

content/journals/10.1049/joe.2018.8342
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address