Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Small-signal stability analysis of Energy Internet through differential inclusion theory

In this study, small-signal stability issue associated with uncertainty excitation is investigated by using differential inclusion theory. Specifically, a polytopic linear differential inclusion (PLDI) model for Energy Internet is developed, in which a modified non-sequence Monte Carlo method is introduced to identify a series of time-variant operation states. Additionally, a simplified small-signal model of renewable energy sources (RES) with virtual synchronous generator control is proposed, and the outputs of RES are modelled as time-varying elements in PLDI model to reflect the inner stochastic excitation in the linearised matrix. The stability criterion for the stochastic time-varying system is mathematically deduced based on convex hull Lyapunov function. Simulation demonstrates the benefits of the proposed model in describing system stochastic characteristics and reducing computational burden.

References

    1. 1)
      • 3. Pierluigi, S., Geev, M.: ‘Probabilistic assessment of the impact of wind energy integration into distribution networks’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 42094217.
    2. 2)
      • 19. Jing, M., Yang, Q., Yinan, L., et al: ‘Research on the impact of DFIG virtual inertia control on power system small-signal stability considering the phase-locked loop’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 20942105.
    3. 3)
      • 16. Jaime, Q., Vijay, V., Gerald, H., et al: ‘The impact of increased penetration of converter control-based generators on power system modes of oscillation’, IEEE Trans. Power Syst., 2015, 29, (5), pp. 22482256.
    4. 4)
      • 7. Jinghao, Z., Peng, S., Deqiang, G., et al: ‘Large-scale power system robust stability analysis based on value set approach’, IEEE Trans. Power Syst., 2017, 32, (5), pp. 40124023.
    5. 5)
      • 2. Ye, W., Vera, S., Miguel, L.B.Z.: ‘Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system’, IET Renew. Power Gener., 2016, 10, (1), pp. 1016.
    6. 6)
      • 21. Bu, S.Q., Du, W., Wang, H.F.: ‘Probabilistic analysis of small-signal rotor angle/voltage stability of large-scale AC/DC power systems as affected by grid-connected off-shore wind generation’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 37123719.
    7. 7)
      • 13. Tingshu, H., Zongli, L.: ‘Properties of the composite quadratic lyapunov functions’, IEEE Trans. Autom. Control, 2004, 49, (7), pp. 11621167.
    8. 8)
      • 11. Georgi, V.S.: ‘Introduction to the theory of differential inclusions’ (American Mathematical Society, Rhode Island, 2002), pp. 114139.
    9. 9)
      • 6. Bo, Y., Ming, Z., Gengyin, L., et al: ‘Stochastic small-signal stability of power systems with wind power generation’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 16801689.
    10. 10)
      • 8. Pan, Y., Liu, F., Chen, L., et al: ‘Towards the robust small-signal stability region of power systems under perturbations such as uncertain and volatile wind generation’, IEEE Trans. Power Syst., 2018, 33, (2), pp. 17901799.
    11. 11)
      • 5. Bu, S.Q., Du, W., Wang, H.F., et al: ‘Probabilistic analysis of small-signal stability of large-scale power systems as affected by penetration of wind generation’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 762770.
    12. 12)
      • 1. Mariia, K.: ‘Real option valuation in renewable energy literature: research focus, trends and design’, Renew. Sust. Energy Rev., 2017, 80, pp. 180196.
    13. 13)
      • 22. Rogers, G.J.: ‘Power system oscillations’ (Kluwer, Norwell, MA, 2000).
    14. 14)
      • 17. Yipeng, S., Frede, B.: ‘Analysis of middle frequency resonance in DFIG system considering phase locked loop’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 343356.
    15. 15)
      • 20. QingChang, Z., Phi-Long, N., Zhenyu, M., et al: ‘Self-synchronized synchronverters: inverters without a dedicated synchronization unit’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 617630.
    16. 16)
      • 10. Bei, H., Lingen, L., Gehao, S., et al: ‘Framework of random matrix theory for power system data mining in a non-Gaussian environment’, IEEE. Access., 2016, 4, pp. 99699977.
    17. 17)
      • 4. Robin, P., Jovica, M.: ‘Efficient estimation of the probability of small-disturbance instability of large uncertain power systems’, IEEE Trans. Power Syst., 2015, 31, (2), pp. 10631072.
    18. 18)
      • 12. Ramos, R., Alberto, L.F.C., Bretas, N.G.: ‘A new methodology for the coordinated design of robust decentralized power system damping controllers’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 444454.
    19. 19)
      • 9. Xinyi, X., Xing, H., Qian, A., et al: ‘A correlation analysis method for power systems based on random matrix theory’, IEEE Trans. Smart Grid, 2015, 8, (4), pp. 110.
    20. 20)
      • 14. Huong, P., Hoeguk, J., Tingshu, H.: ‘State-space approach to modeling and ripple reduction in AC–DC converters’, IEEE Trans. Control Syst. Technol., 2013, 21, (5), pp. 19491955.
    21. 21)
      • 15. Yao, Y., Fidegnon, F., Tingshu, H.: ‘Stability and robust regulation of battery-driven boost converter with simple feed-back’, IEEE Trans. Power Electron., 2010, 26, (9), pp. 26142626.
    22. 22)
      • 18. Qingchang, Z., George, W.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8340
Loading

Related content

content/journals/10.1049/joe.2018.8340
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address