Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Battery–supercapacitor hybrid energy storage system for wind power suppression based on the turbulence model of wind speed

Based on the turbulence model, the volatility of real-time wind speed is discussed, which is composed of an average component and a fluctuant component. By deriving the probability density function of fluctuant wind speed and investigating the probability density curve, the authors decompose the fluctuant wind power into the steady fluctuation and peak fluctuation. According to the properties of steady fluctuation and peak fluctuation, the authors determine that the energy storage system applied into the real-time wind power fluctuation should be of the performance of high power density, high energy density and long cycle life. Through the comparative analysis on the energy storage performance, the battery and supercapacitor are proved to be suitable for regulating the steady and peak fluctuation, respectively. According to that task assignment, the energy storage performance of a battery–supercapacitor hybrid system is investigated. Based on the wind power decomposition, this study develops a new capacity configuration method for the hybrid system and gives an example analysis. By that method, the battery and supercapacitor in the hybrid system can be allocated proper energy and power capacity to balance the steady and peak fluctuation, respectively. Consequently, their energy storage merits can be fully utilised.

References

    1. 1)
      • 1. Acharya, N., Liu, C.-C., Djukanovic, M.B.: ‘Wind generation curtailment to relieve line overload in an on-line environment’, Eur. Trans. Electr. Power, 2009, 19, (7), p. 854.
    2. 2)
      • 3. Morales, A.B., Trecat, J., Crappe, M.: ‘Impact of decentralized wind generation in power systems reliability, variable speed wind turbines’, Eur. Trans. Electr. Power, 2007, 14, (9), pp. 189193.
    3. 3)
      • 12. Hu, Y., Chen, J., Zuo, H.: ‘The theorem of turbulence intensity and macro-mechanism of turbulence development’, Sci. China Ser. D, Earth Sci., 2007, 37, (2), pp. 272281.
    4. 4)
      • 27. Welfonder, E., Neifer, R., Spanner, M.: ‘Development and experimental identification of dynamic models for wind turbines’, Control Eng. Pract., 1997, 5, (1), pp. 6373.
    5. 5)
      • 7. Hou, Y., Fang, D., Qi, J., et al: ‘Analysis on active power fluctuation characteristics of large-scale grid-connected wind farm and generation scheduling simulation under different capacity power injected from wind farms into power grid’, Power Syst. Technol., 2011, 34, (5), pp. 6066.
    6. 6)
      • 15. Xu, L., Xu, Z., Zhang, H.: ‘The research on the multiscale properties of the surface layer turbulence located on different underlying surface’, Acta Meteorol. Sin., 2000, 58, (1), pp. 8488.
    7. 7)
      • 26. Fu, S.: ‘Second-order moment closure model of turbulence probability density function’, Acta Aerodyn. Sin., 1995, 13, (1), pp. 1926.
    8. 8)
      • 20. Wee, K.W., Choi, S.S., Vilathgamuwa, D.M.: ‘Design of a least-cost battery-supercapacitor energy storage system for realizing dispatchable wind power’, IEEE Trans. Sustain. Energy, 2013, 4, (3), pp. 786796.
    9. 9)
      • 24. Monin, A.S., Obukhov, A.M.: ‘Basic laws of turbulent mixing in the atmosphere near the ground’, Trans. Akad. Nauk. SSSR Geofiz. Inst., 1954, 24, (151), pp. 163187.
    10. 10)
      • 4. Sheikh, M.R.I., Muyeen, S.M., Takahashi, R., et al: ‘Smoothing control of wind generator output fluctuations by PWM voltage source converter and chopper controlled SMES’, Eur. Trans. Electr. Power, 2011, 21, (1), pp. 680697.
    11. 11)
      • 11. Han, T., Lu, J., Qiao, L.: ‘Optimized scheme of energy-storage capacity for grid-connected large-scale wind farm’, Power Syst. Technol., 2010, 34, (1), pp. 170177.
    12. 12)
      • 25. Businger, J.A., Wangaard, J.C., Izumi, Y.: ‘Flux profile relationships in the atmospheric surface layer’, J. Atmos. Sci., 1971, 282, (2), pp. 181189.
    13. 13)
      • 19. Jiang, Q., Hong, H.: ‘Wavelet-based capacity configuration and coordinated control of hybrid energy storage system for smoothing out wind power fluctuations’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13631372.
    14. 14)
      • 5. Hansen, A.D., Sørensen, P., Lov, F.: ‘Centralised power control of wind farm with doubly fed induction generators’, Renew. Energy, 2007, 31, (7), pp. 935951.
    15. 15)
      • 8. Chiodo, E., Lauria, D.: ‘Bayes prediction of wind gusts for wind power plants reliability estimation’. Int. Conf. on Clean Electrical Power, Ischia, Italy, June 2011, pp. 498506.
    16. 16)
      • 23. Groisman, A., Steinberg, V.: ‘Elastic turbulence in a polymer solution flow’, Nature, 2004, 200, (405), pp. 5362.
    17. 17)
      • 18. Jiang, Q., Wang, H.: ‘Two-time-scale coordination control for a battery energy storage system to mitigate wind power fluctuations’, IEEE Trans. Energy Convers., 2013, 28, (1), pp. 5261.
    18. 18)
      • 6. Jangamshetti, S.H., Ran, V.G.: ‘Optimum siting of wind turbine generators’, IEEE Trans. Energy Convers., 2001, 16, (1), pp. 813.
    19. 19)
      • 14. Stull, R.B.: ‘An introduction to boundary layer meteorology’ (Academic Press, San Diego, 1988), pp. 128168.
    20. 20)
      • 16. Wang, X.Y., Mahinda Vilathgamuwa, D., Choi, S.S.: ‘Determination of battery storage capacity in energy buffer for wind farm’, IEEE Trans. Energy Convers., 2008, 23, (3), pp. 868878.
    21. 21)
      • 17. Li, Q., Choi, S.S., Yuan, Y., et al: ‘Determination of battery energy storage capacity and short-term power dispatch of a wind farm’, IEEE Trans. Sustain. Energy, 2011, 2, (2), pp. 148158.
    22. 22)
      • 13. Leithead, W.E., de la Salle, S., Reardon, D.: ‘Role and objectives of control for wind turbines’, IEE Proc. Gener., Transm. Distrib., 1991, 138, (2), pp. 135148.
    23. 23)
      • 22. Björn, H., van Doorne, C.W.H.: ‘Waves in turbulent pipe flow’, Science, 2004, 305, (5690), pp. 15941598.
    24. 24)
      • 2. Joselin Herbert, G.M., Iniyan, S., Sreevalsan, E., et al: ‘A review of wind energy technologies’, Renew. Sust. Energy Rev., 2007, 11, (6), pp. 11171145.
    25. 25)
      • 9. Liu, J., Ding, T.: ‘Wind speed prediction model based on radial basis functional neural network’, Acta Energiae Solaris Sin., 2011, 7, pp. 11311135.
    26. 26)
      • 10. Nichita, C., Luca, D., Dakyo, B., et al: ‘Large band simulation of the wind speed for real time wind turbine simulators’, IEEE Trans. Energy Convers., 2002, 17, (4), pp. 523529.
    27. 27)
      • 21. Busse, F.H.: ‘Visualizing the dynamics of the onset of turbulence’, Science, 2004, 305, (5690), pp. 15741575.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8334
Loading

Related content

content/journals/10.1049/joe.2018.8334
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address