http://iet.metastore.ingenta.com
1887

access icon openaccess 3D vision measurement for small devices based on consumer sensors

  • PDF
    2.12408447265625MB
  • HTML
    74.6298828125Kb
  • XML
    67.4541015625Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8330.html;jsessionid=1o394t5hnx8eo.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8330&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Computer Vision and Pattern Recognition, San Diego, CA, USA, 2005, pp. 886893.
    2. 2)
      • 2. Dongwei, L.: ‘Development status of industrial measurement system at home and abroad’, Sci. Technol. Inf., 2011, (8), pp. 130130.
    3. 3)
      • 3. Sun, C., Shi, H., Qiu, Y., et al: ‘Line-structured laser scanning measurement system for BGA lead coplanarity’. Asia Pacific Conf. on Circuits and Systems, Tianjin, China, December 2000, pp. 715718.
    4. 4)
      • 4. Rusu, R.B., Cousins, S.: ‘3D is here: point cloud library (PCL)’. Int. Conf. on Robotics and Automation, Marseille, France, September 2011, pp. 14.
    5. 5)
      • 5. Brostow, G.J., Shotton, J., Fauqueur, J., et al: ‘Segmentation and recognition using structure from motion point clouds’. European Conf. on Computer Vision, Marseille, France, October 2008, pp. 4457.
    6. 6)
      • 6. Cortes, C., Vapnik, V.: ‘Support-vector networks’, Mach. Learn., 1995, 20, (3), pp. 273297.
    7. 7)
      • 7. Boser, B.E., Guyon, I.M., Vapnik, V.N.: ‘Algorithm for optimal margin classifiers’, Comput. Learn. Theory, 1992.
    8. 8)
      • 8. ‘Camera models and imaging’. Available at http://www.comp.nus.edu.sg/~cs4243/lecture/camera.pdf, accessed 18 May 2018.
    9. 9)
      • 9. Vapnik, V.: ‘The nature of statistical learning theory’. Conf. on Artificial Intelligence, Funchal, Madeira, Portugal, October 1995, pp. 988999.
    10. 10)
      • 10. Hsu, C., Lin, C.: ‘A comparison of methods for multi-class support vector machines’, IEEE Trans. Neural Netw., 2002, 13, (2), pp. 415425.
    11. 11)
      • 11. Schölkopf, B.: ‘A comparison on methods for multi-class support vector machines’, IEEE Trans. Neural Netw., 2008, 13, (2), pp. 415425.
    12. 12)
      • 12. Kressel, U.H.G.: ‘Pairwise classification and support vector machines’, in Burges, C.J.C., Scholkopf, B., Smola, A.J. (Eds.): ‘Advances in kernel methods’ (MIT Press, Cambridge, 1999), pp. 547553.
    13. 13)
      • 13. Platt, J., Cristianini, N., Shawetaylor, J., et al: ‘Large margin DAGs for multiclass classification’. Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2000, pp. 547553.
    14. 14)
      • 14. Lingfeng, N.: ‘Parallel algorithm for training multi-class proximal support vector machines’, Appl. Math. Comput., 2011, 217, (12), pp. 53285337.
    15. 15)
      • 15. Kim, K., Chalidabhongse, T.H., Harwood, D., et al: ‘Real-time foreground-background segmentation using code-book model’, Real-Time Imaging, 2005, 11, (3), pp. 172185.
    16. 16)
      • 16. Woo, H., Kang, E., Wang, S., et al: ‘A new segmentation method for point cloud data’, Int. J. Mach. Tools Manuf., 2002, 42, (2), pp. 67178.
    17. 17)
      • 17. Schnabel, R., Wahl, R., Klein, R., et al: ‘Efficient RANSAC for point-cloud shape detection’, Comput. Graph. Forum, 2007, 26, (2), pp. 214226.
    18. 18)
      • 18. Preetha, M.M.S.J., Suresh, L.P., Bosco, M.J.: ‘Image segmentation using seeded region growing’. 2012 Int. Conf. on Computing, Electronics and Electrical Technologies (ICCEET), Nagercoil, Tamil Nadu, India, March 2012, pp. 576583.
    19. 19)
      • 19. Assem, I., Dupont, G.: ‘Friezes and a construction of the Euclidean cluster variables’, J. Pure Appl. Algebra, 2010, 215, (2), pp. 23222340.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8330
Loading

Related content

content/journals/10.1049/joe.2018.8330
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address