http://iet.metastore.ingenta.com
1887

access icon openaccess Handover detection approach based on trajectory data mining techniques

  • HTML
    39.57421875Kb
  • XML
    38.11328125Kb
  • PDF
    1.2683496475219727MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8326.html;jsessionid=31v51er39836v.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8326&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Qiao, S., Tang, C., Jin, H., et al: ‘Putmode: prediction of uncertain trajectories in moving objects databases’, Appl. Intell., 2010, 33, (3), pp. 370386.
    2. 2)
      • 2. Qiao, S., Li, T., Han, N., et al: ‘Self-adaptive trajectory prediction model for moving objects in big data environment’, J. Soft., 2015, 26, (11), pp. 28692883(in Chinese).
    3. 3)
      • 3. Qiao, S., Han, N., Zhu, W., et al: ‘Traplan: an effective three-in-one trajectory prediction model in transportation networks’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (3), pp. 11881198.
    4. 4)
      • 4. Chen, J., Meng, X., Guo, Y., et al: ‘Modeling and predicting future trajectories of moving objects in a constrained network’. Proc. Int. Conf. Mobile Data Management, Nara, Japan, May 2006, pp. 156156.
    5. 5)
      • 5. Qiao, S., Jin, K., Han, N., et al: ‘Trajectory prediction algorithm based on Gaussian mixture model’, J. Software, 2015, 26, (5), pp. 10481063, (in Chinese).
    6. 6)
      • 6. Qiao, S., Shen, D., Wang, X., et al: ‘A self-adaptive parameter selection trajectory prediction approach via hidden Markov models’, IEEE Trans. Intell. Trans. Syst., 2015, 16, (1), pp. 284296.
    7. 7)
      • 7. Ding, Z., Yang, B., Güting, R.H., et al: ‘Network-matched trajectory-based moving-object database: models and applications’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (4), pp. 111.
    8. 8)
      • 8. Dai, J., Yang, B., Guo, C., et al: ‘Personalized route recommendation using big trajectory data’. Proc. 31st IEEE Int. Conf. Data Engineering, Seoul, South Korea, April 2015, pp. 543554.
    9. 9)
      • 9. Yuan, G., Zhao, J., Xia, S., et al: ‘Multi-granularity periodic activity discovery for moving objects’, Int. J. Geogr. Inf. Sci., 2016, 31, (3), pp. 128.
    10. 10)
      • 10. Qiao, Y., Cheng, Y., Yang, J., et al: ‘A mobility analytical framework for big mobile data in densely populated area’, IEEE Trans. Veh. Technol., 2017, 66, (2), pp. 14431455.
    11. 11)
      • 11. Jameel, M., Zhang, L.: ‘Unnecessary handover minimization in two tier heterogeneous networks’. Proc. 13th Annual Conf. Wireless On-demand Network Systems and Services, Jackson Hole, Wyoming, USA, February 2017, pp. 160164.
    12. 12)
      • 12. Fachtali, I.E., Saadane, R., Koutbi, M.E.: ‘Improved vertical handover decision algorithm using ants’ colonies with adaptive pheromone evaporation rate for 4th generation heterogeneous wireless networks’, Int. J. Wirel. Mob. Comput., 2017, 12, (2), pp. 154165.
    13. 13)
      • 13. Olson, D.L.: ‘Descriptive data mining’ (Springer, Singapore, 2017), pp. 6169.
    14. 14)
      • 14. Qiao, S., Han, N., Zhou, J., et al: ‘Socialmix: a familiarity-based and preference-aware location suggestion approach’, Eng. Appl. Artif. Intell., 2018, 68, pp. 192204.
    15. 15)
      • 15. Qiao, S., Li, T., Li, H., et al: ‘A new block modeling based hierarchical clustering algorithm for web social networks’, Eng. Appl. Artif. Intell., 2012, 25, (3), pp. 640647.
    16. 16)
      • 16. Qiao, S., Li, T., Yang, Y., et al: ‘Managing uncertainty in web-based social networks’, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 2012, 20, (Suppl 1), pp. 147158.
    17. 17)
      • 17. Liu, H., Ma, J., Huang, W.: ‘Sensor-based complete coverage path planning in dynamic environment for cleaning robot’, CAAI Trans. Intell. Technol., 2018, 3, (1), pp. 6572.
    18. 18)
      • 18. Li, M., Jiang, R., Ge, S., et al: ‘Role playing learning for socially concomitant mobile robot navigation’, CAAI Trans. Intell. Technol., 2018, 3, (1), pp. 4958.
    19. 19)
      • 19. Ma, J., Jiang, X., Gong, M.: ‘Two-phase clustering algorithm with density exploring distance measure’, CAAI Trans. Intell. Technol., 2018, 3, (1), pp. 5964.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8326
Loading

Related content

content/journals/10.1049/joe.2018.8326
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address