http://iet.metastore.ingenta.com
1887

access icon openaccess Image segmentation based on modified superpixel segmentation and spectral clustering

  • HTML
    182.1552734375Kb
  • XML
    145.6533203125Kb
  • PDF
    4.641788482666016MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8320.html;jsessionid=3mbrts8a01r2f.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8320&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Wang, X. F., Huang, D. S., Xu, H.: ‘An efficient local Chan-Vese model for image segmentation’, Pattern Recognit., 2010, 43, (3), pp. 603618.
    2. 2)
      • 2. Cimpoi, M., Maji, S., Vedaldi, A.: ‘Deep filter banks for texture recognition and segmentation’. IEEE Conf. on Computer Vision and Pattern Recognition, June 2015, vol. 118, pp. 38283836.
    3. 3)
      • 3. Mesejo, P., Valsecchi, A., Marrakchi-Kacem, L., et al: ‘Biomedical image segmentation using geometric deformable models and metaheuristics’, Comput. Med. Imag. Graph., 2015, 43, pp. 167178.
    4. 4)
      • 4. Alamri, S. S., Kalyankar, N. V., Khamitkar, S. D.: ‘Image segmentation by using threshold techniques’, Comput. Sci., 2010, 2, (5), pp. 8386.
    5. 5)
      • 5. Liu, C., Liu, W., Xing, W.: ‘An improved edge-based level set method combining local regional fitting information for noisy image segmentation’, Signal Process., 2017, 130, pp. 1221.
    6. 6)
      • 6. Cai, W., Chen, S., Zhang, D.: ‘Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation’, Pattern Recognit., 2007, 40, (3), pp. 825838.
    7. 7)
      • 7. Zhu, L., Huang, D. S.: ‘A Rayleigh? Ritz style method for large- scale discriminant analysis’, Pattern Recognit., 2014, 47, (4), pp. 16981708.
    8. 8)
      • 8. Gu, R., Chen, S., Wang, J.: ‘An adaptive spectral clustering algorithm for image clustering and segmentation’, Inf. Technol. J., 2013, 12, (22), pp. 67636769.
    9. 9)
      • 9. Ozertem, U., Erdogmus, D., Jenssen, R.: ‘Mean shift spectral clustering’, Pattern Recognit., 2008, 41, (6), pp. 19241938.
    10. 10)
      • 10. Zhang, X., Li, J., Yu, H.: ‘Local density adaptive similarity measurement for spectral clustering’, Pattern Recognit. Lett., 2011, 32, (2), pp. 352358.
    11. 11)
      • 11. Zou, X., Xiaodong, Y. E., Tan, Z., et al: ‘Image segmentation method based on improved similarity measure of spectral clustering’, Comput. Eng. Appl., 2017, 53, pp. 405409.
    12. 12)
      • 12. Fowlkes, C., Belongie, S., Chung, F., et al: ‘Spectral grouping using the Nystrm method’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (2), pp. 214225.
    13. 13)
      • 13. Luoxue, G., Lvjun, R., Wanghua, J., et al: ‘Color image segmentation based on superpixels and reciprocal nearest neighbors clustering’, J. Guangxi Univ.: Nat. Sci. Educ., 2013, 38, (2), pp. 374375.
    14. 14)
      • 14. Ng, A. Y., Jordan, M. I., Weiss, Y.: ‘On spectral clustering: analysis and an algorithm’, Proc. Nips, 2001, 14, pp. 849856.
    15. 15)
      • 15. Shen, J., Hao, X., Liang, Z., et al: ‘Real-time superpixel segmentation by DBSCAN clustering algorithm’, IEEE Trans. Image Process. A Publ IEEE Signal Process. Soc., 2016, 25, (12), pp. 59335942.
    16. 16)
      • 16. Yu, J., Yan, Q., Zhang, Z., et al: ‘Unsupervised classification of polarimetric synthetic aperture radar images using kernel fuzzy c-means clustering’, Int. J. Image Data Fusion, 2012, 3, (4), pp. 319332.
    17. 17)
      • 17. Ren, X., Malik, J.: ‘Learning a classification model for segmentation’, Proc. ICCV, 2003, 1, pp. 1017.
    18. 18)
      • 18. Martin, D., Fowlkes, C., Tal, D., et al: ‘A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics’. Proc. of the Eighth IEEE Int. Conf. on Computer Vision, 2001, ICCV 2001, July 2002, vol. 2, pp. 416423.
    19. 19)
      • 19. Achanta, R., Shaji, A., Smith, K., et al: ‘SLIC superpixels compared to state-of-the-art superpixel methods’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 34, (11), pp. 22742282.
    20. 20)
      • 20. Li, Z., Chen, J.: ‘Superpixel segmentation using linear spectral clustering’, IEEE Comput. Vis. Pattern Recognit., 2015, pp. 13561363.
    21. 21)
      • 21. Shen, J., Du, Y., Wang, W., et al: ‘Lazy random walks for super-pixel segmentation’, IEEE Trans. Image Process., 2014, 23, (4), pp. 14511462.
    22. 22)
      • 22. Liu, M. Y., Tuzel, O., Ramalingam, S., et al: ‘Entropy rate super-pixel segmentation’, Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, June 2011, pp. 20972104.
    23. 23)
      • 23. Neubert, P., Protzel, P.: ‘Superpixel benchmark and comparison’. Forum Bildverarbeitung, 2012, pp. 112.
    24. 24)
      • 24. Zelnik-Manor, L., Perona, P.: ‘Self-tuning spectral clustering’, Adv. Neural. Inf. Process. Syst., 2004, 17, pp. 16011608.
    25. 25)
      • 25. Li, Z., Wu, X. M., Chang S, F.: ‘Segmentation using superpixels: a bipartite graph partitioning approach’, IEEE Comput. Vis. Pattern Recognit., 2012, 157, pp. 789796.
    26. 26)
      • 26. Arbeláez, P., Maire, M., Fowlkes, C., et al: ‘Contour detection and hierarchical image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 898916.
    27. 27)
      • 27. Marina, M.: ‘Comparing clusterings: an axiomatic view’. Proc. of the 22nd Int. Conf. on Machine Learning, New York, 2005, pp. 577584.
    28. 28)
      • 28. Unnikrishnan, R., Pantofaru, C., Hebert, M.: ‘Toward objective evaluation of image segmentation algorithms’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (6), pp. 929944.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8320
Loading

Related content

content/journals/10.1049/joe.2018.8320
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address