http://iet.metastore.ingenta.com
1887

access icon openaccess Fusion-based holistic road scene understanding

  • PDF
    3.6542186737060547MB
  • XML
    80.197265625Kb
  • HTML
    85.03125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8319.html;jsessionid=5b44i57mrnbci.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8319&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Alvarez, J.M., Gevers, T., Lopez, A.M.: ‘3D scene priors for road detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, USA, 2010, pp. 5764.
    2. 2)
      • 2. Huang, W., Gong, X., Liu, J.: ‘Integrating visual and range data for road detection’. Proc. IEEE Int. Conf. Image Processing, Melbourne, Australia, 2013.
    3. 3)
      • 3. Benenson, R., Mathias, M., Timofte, R., et al: ‘Pedestrian detection at 100 frames per second’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 29032910.
    4. 4)
      • 4. Liu, Y., Guo, J., Chang, C.: ‘Low resolution pedestrian detection using light robust features and hierarchical system’, Pattern Recognit., 2014, 47, (4), pp. 16161625.
    5. 5)
      • 5. Nguyen, T.H.B., Kim, H.: ‘Novel and efficient pedestrian detection using bidirectional PCA’, Pattern Recognit., 2013, 46, (8), pp. 22202227.
    6. 6)
      • 6. Jia, Y., Zhang, C.: ‘Front-view vehicle detection by markov chain monte carlo method’, Pattern Recognit., 2009, 42, (3), pp. 313321.
    7. 7)
      • 7. Cheng, H., Wang, R.: ‘Semantic modeling of natural scenes based on contextual Bayesian networks’, Pattern Recognit., 2010, 43, (12), pp. 40424054.
    8. 8)
      • 8. Levinkov, E., Fritz, M.: ‘Sequential Bayesian model update under structured scene prior for semantic road scenes labeling’. Proc. IEEE Int. Conf. Computer Vision, Sydney, Australia, 2013.
    9. 9)
      • 9. Guo, C., Mita, S., McAllester, D.: ‘Hierarchical road understanding for intelligent vehicles based on sensor fusion’. Proc. Int. IEEE Conf. Intelligent Transportation Systems, Washington, D.C., USA, 2011, pp. 16721679.
    10. 10)
      • 10. Alvarez, J.M., Gevers, T., LeCun, Y., et al: ‘Road scene segmentation from a single image’. Proc. European Conf. Computer Vision, Firenze, Italy, 2012, pp. 376389.
    11. 11)
      • 11. Huang, W., Gong, X., Xiang, Z.: ‘Road scene segmentation via fusing camera and lidar data’. Proc. Int. Conf. Intelligent Robotics and Automation, Hong Kong, China, 2014.
    12. 12)
      • 12. Jung, C., Kim, C.: ‘Real-time estimation of 3D scene geometry from a single image’, Pattern Recognit., 2012, 45, (9), pp. 32563269.
    13. 13)
      • 13. Matzen, K., Snavely, N.: ‘NYC3DCars: a dataset of 3D vehicles in geographic context’. Proc. IEEE Int. Conf. Computer Vision, Sydney, Australia, 2013.
    14. 14)
      • 14. Geiger, A., Lenz, P., Urtasun, R.: ‘Are we ready for autonomous driving? The KITTI vision benchmark suite’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 33543361.
    15. 15)
      • 15. Bleyer, M., Rother, C., Kohli, P., et al: ‘Object stereo - Joint stereo matching and object segmentation’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, pp. 30813088.
    16. 16)
      • 16. Ladick'y, L., Sturgess, P., Russell, C., et al: ‘Joint optimization for object class segmentation and dense stereo reconstruction’, Int. J. Comput. Vis., 2012, 100, (2), pp. 122133.
    17. 17)
      • 17. Hane, C., Zach, C., Cohen, A., et al: ‘Joint 3D scene reconstruction and class segmentation’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Portland, USA, 2013, pp. 97104.
    18. 18)
      • 18. Gonfaus, J.M., Boix, X., Van de Weijer, J., et al: ‘Harmony potentials for joint classification and segmentation’. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, USA, 2010, pp. 32803287.
    19. 19)
      • 19. Heitz, G., Gould, S., Saxena, A., et al: ‘Cascaded classification models: combining models for holistic scene understanding’. Advances in Neural Information Processing Systems, Vancouver, Canada, 2008, pp. 641648.
    20. 20)
      • 20. Lin, D., Fidler, S., Urtasun, R.: ‘Holistic scene understanding for 3D object detection with RGBD cameras’. Proc. IEEE Int. Conf. Computer Vision, Sydney, Australia, 2013.
    21. 21)
      • 21. Li, C., Kowdle, A., Saxena, A., et al: ‘Toward holistic scene understanding feedback enabled cascaded classification models’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (7), pp. 13941408.
    22. 22)
      • 22. Yao, J., Fidler, S., Urtasun, R.: ‘Describing the scene as a whole: joint object detection, scene classification and semantic segmentation’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 702709.
    23. 23)
      • 23. Ladick'y, L., Sturgess, P., Alahari, K., et al: ‘What, where and how many? Combining object detectors and crfs’. Proc. of the European Conf. on Computer Vision, Hersonissos, Greece, 2010, pp. 424437.
    24. 24)
      • 24. Tighe, J., Lazebnik, S.: ‘Understanding scenes on many levels’. Proc. IEEE Int. Conf. Computer Vision, Barcelona, Spain, 2011, pp. 335342.
    25. 25)
      • 25. Boykov, Y., Jolly, M.P.: ‘Interactive graph cuts for optimal boundary & region segmentation of objects in ND images’. Proc. IEEE Int. Conf. Computer Vision, Vancouver, Canada, 2001, pp. 105112.
    26. 26)
      • 26. Liu, J., Gong, X.: ‘Guided depth enhancement via anisotropic diffusion’. Advances in Multimedia Information Processing–PCM, Tokyo, Japan, 2013, pp. 408417.
    27. 27)
      • 27. Douillard, B., Underwood, J., Kuntz, N., et al: ‘On the segmentation of 3d lidar point clouds’. Proc. IEEE Int. Conf. Robotics and Automation, Shanghai, China, 2011, pp. 27982805.
    28. 28)
      • 28. Fischler, M.A., Bolles, R.C.: ‘Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography’, Communications of the ACM, 1981, 24, (6), pp. 381395.
    29. 29)
      • 29. PCL, Euclidean cluster extraction, http://www.pointclouds.org/documentation/tutorials/cluster extraction.php, 2013.
    30. 30)
      • 30. Rusu, R.B., Cousins, S.: ‘3d is here: point cloud library (pcl)’. Proc. IEEE Int. Conf. Robotics and Automation, Shanghai, China, 2011, pp. 14.
    31. 31)
      • 31. Socher, R., Huval, B., Bath, B., et al: ‘Convolutional recursive deep learning for 3D object classification’. Advances in Neural Information Processing Systems, Lake Tahoe, USA, 2012, pp. 665673.
    32. 32)
      • 32. Rother, C., Kolmogorov, V., Blake, A.: ‘Grabcut: interactive foreground extraction using iterated graph cuts’, ACM Trans. Graph., 2004, 23, (3), pp. 309314.
    33. 33)
      • 33. Wenqi, H., Xiaojin, G.: ‘Fusion based holistic road scene understanding’, arXiv:1406.7525.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8319
Loading

Related content

content/journals/10.1049/joe.2018.8319
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address