http://iet.metastore.ingenta.com
1887

access icon openaccess Vector-based approaches for computing approximations in multigranulation rough set

  • PDF
    1.6970129013061523MB
  • HTML
    269.955078125Kb
  • XML
    213.8564453125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8317.html;jsessionid=6la7isagb6gm.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8317&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Pawlak, Z.: ‘Rough set’, Int. J. Comput. Inf. Sci., 1982, 11, (5), pp. 341356.
    2. 2)
      • 2. Pawlak, Z., Skowron, A.: ‘Rough sets: some extensions’, Inf. Sci., 2007, 177, (1), pp. 2840.
    3. 3)
      • 3. Fan, M., Hu, Q., Zhu, W.: ‘Feature selection with test cost constraint’, Int. J. Approx. Reason., 2012, 55, (1), pp. 167179.
    4. 4)
      • 4. Hu, Q., An, S., Yu, X., et al: ‘Robust fuzzy rough classifiers’, Fuzzy Sets Syst., 2011, 183, (1), pp. 2643.
    5. 5)
      • 5. Liu, D., Li, T., Liang, D.: ‘Incorporating logistic regression to decision-theoretic rough sets for classifications’, Int. J. Approx. Reason., 2014, 55, (1), pp. 197210.
    6. 6)
      • 6. Luo, C., Li, T., Chen, H.: ‘Dynamic maintenance of approximations in set-valued ordered decision systems under the attribute generalization’. Int. J. Intell. Syst., 2013, 28, (8), pp. 729ȁ;751.
    7. 7)
      • 7. Qian, Y., Liang, J., Pedrycz, W., et al: ‘Positive approximation: an accelerator for attribute reduction in rough set theory’, Artif. Intell., 2010, 174, (9), pp. 597618.
    8. 8)
      • 8. Swiniarski, R. W., Skowron, A.: ‘Rough set methods in feature selection and recognition’, Pattern Recognit. Lett., 2003, 24, (6), pp. 833849.
    9. 9)
      • 9. Yao, Y.: ‘Three-way decisions with probabilistic rough sets’, Inf. Sci., 2011, 180, (3), pp. 341353.
    10. 10)
      • 10. Zhu, P., Hu, Q.: ‘Rule extraction from support vector machines based on consistent region covering reduction’, Knowl.-Based Syst., 2013, 42, (2), pp. 18.
    11. 11)
      • 11. Chen, D., Li, W., Zhang, X., et al: ‘Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets’, Int. J. Approx. Reason., 2014, 55, (3), pp. 908923.
    12. 12)
      • 12. Inuiguchi, M.: ‘Generalizations of rough sets and rule extraction’ (Springer, Berlin Heidelberg, 2004).
    13. 13)
      • 13. Leung, Y., Fischer, M. M., Wu, W. Z., et al: ‘A rough set approach for the discovery of classification rules in interval-valued information systems’, Int. J. Approx. Reason., 2008, 47, (2), pp. 233246.
    14. 14)
      • 14. Lin, Y., Hu, X., Wu, X.: ‘Quality of information-based source assessment and selection’, Neurocomputing, 2014, 133, (133), pp. 95102.
    15. 15)
      • 15. Qian, Y., Zhang, H., Li, F., et al: ‘Set-based granular computing: a lattice model’, Int. J. Approx. Reason., 2014, 55, (3), pp. 834852.
    16. 16)
      • 16. Qian, Y., Zhang, H., Sang, Y., et al: ‘Multigranulation decision-theoretic rough sets’, Int. J. Approx. Reason., 2014, 55, (1), pp. 225237.
    17. 17)
      • 17. Wu, W. Z., Leung, Y., Shao, M. W.: ‘Generalized fuzzy rough approximation operators determined by fuzzy implicators’, Int. J. Approx. Reason., 2013, 54, (9), pp. 13881409.
    18. 18)
      • 18. Yao, Y.: ‘Probabilistic rough set approximations’, Int. J. Approx. Reason., 2008, 49, (2), pp. 255271.
    19. 19)
      • 19. Yao, Y., Yao, B.: ‘Covering based rough set approximations’, Inf. Sci., 2012, 200, (1), pp. 91107.
    20. 20)
      • 20. Sun, B., Gong, Z., Chen, D.: ‘Fuzzy rough set theory for the interval-valued fuzzy information systems?’, Comput. Eng. Appl., 2011, 178, (13), pp. 27942815.
    21. 21)
      • 21. Qian, Y., Liang, J., Yao, Y., et al: ‘MGRS: a multi-granulation rough set’, Inf. Sci., 2010, 180, (6), pp. 949970.
    22. 22)
      • 22. Hu, C., Liu, S., Liu, G.: ‘Matrix-based approaches for dynamic updating approximations in multigranulation rough sets’, Knowl.-Based Syst., 2017, 122, pp. 5163.
    23. 23)
      • 23. Cheng, Y.: ‘Research on covering rough set algorithm based on matrix’. PhD thesis, AnHui University, 2017.
    24. 24)
      • 24. Liu, G. L.: ‘The axiomatization of the rough set upper approximation operations’, Fundam. Inf. Arch., 2006, 69, (3), pp. 331342.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8317
Loading

Related content

content/journals/10.1049/joe.2018.8317
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address