Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Pedestrian trajectory prediction via the Social-Grid LSTM model

In the design of intelligent driving systems, reliable and accurate trajectory prediction of pedestrians is necessary. With the prediction of pedestrians’ trajectory, the possible collisions can be avoided or warned as early as possible by changing the behaviour of intelligent vehicles. The trajectory prediction problem can be considered as a sequence learning problem, in which one of the recurrent neural network (RNN) models called long short term memory (LSTM) has been regarded as a promising method. The authors present a new method for predicting the pedestrian's trajectory, which is called Social-Grid LSTM based on RNN architecture. The proposed method combines the human–human interaction model called social pooling and the Grid LSTM network model. The performance of the proposed method is demonstrated on two available public datasets, and compared with two baseline methods (LSTM and Social LSTM). The experimental results indicate that the authors’ proposed method outperforms previous prediction approaches.

References

    1. 1)
      • 12. Pascanu, R., Mikolov, T., Bengio, Y.: ‘On the difficulty of training recurrent neural networks’. Int. Conf. on Machine Learning (ICML), Atlanta, USA, June 2013, vol. 28, pp. 13101318.
    2. 2)
      • 4. Alahi, A., Goel, K., Ramanathan, V., et al: ‘Social LSTM: human trajectory prediction in crowded spaces’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 961971.
    3. 3)
      • 20. Lerner, A., Chrysanthou, Y., Lischinski, D.: ‘Crowds by example’, in ‘Computer graphics forum’ (Wiley Online Library, 2007), vol. 26, pp. 655664.
    4. 4)
      • 17. Xue, H., Huynh, D.Q., Reynolds, M.: ‘Bi-prediction: pedestrian trajectory prediction based on bidirectional LSTM classification’. Int. Conf. on Digital Image Computing: Techniques and Applications, Sydney, Australia, December 2017, pp. 18.
    5. 5)
      • 10. Hao, X., Du, Q.H., Reynolds, M.: ‘SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction’. IEEE Winter Conf. on Applications of Computer Vision (WACV), Lake Tahoe, USA, March 2018, pp. 11861194.
    6. 6)
      • 24. Xu, K., Ba, J., Kiros, R., et al: ‘Show, attend and tell: neural image caption generation with visual attention’. 32nd Int. Conf. on Machine Learning (ICML 2015), Lile, France, July 2015, pp. 20482057.
    7. 7)
      • 18. Lee, N., Choi, W., Vernaza, P., et al: ‘Desire: distant future prediction in dynamic scenes with interacting agents’, arXiv preprint arXiv: 1704.04394, 2017.
    8. 8)
      • 15. Park, S.H., Kim, B.D., Kang, C.M., et al: ‘Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture’. IEEE Intelligent Vehicles Symp. (IV), Chang Shu, China, June 2018, pp. 16721678.
    9. 9)
      • 19. Pellegrini, S., Ess, A., Schindler, K., et al: ‘You'll never walk alone: modeling social behavior for multi-target tracking’. IEEE 12th Int. Conf. on Computer Vision, 2009, pp. 261268.
    10. 10)
      • 8. Tay, M.K.C., Laugier, C.: ‘Modelling smooth paths using Gaussian processes’, in ‘Field and service robotics’ (Springer, Berlin, 2008), pp. 381390.
    11. 11)
      • 25. Geronimo, D., Lopez, A.M., Sappa, A.D., et al: ‘Survey of pedestrian detection for advanced driver assistance systems’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (7), pp. 12391258.
    12. 12)
      • 23. Vaswani, A., Shazeer, N., Parmar, N., et al: ‘Attention is all you need’. Int. Conf. on Neural Information Processing Systems (NIPS), 2017, pp. 111.
    13. 13)
      • 1. Helbing, D., Molnar, P.: ‘Social force model for pedestrian dynamics’, Phys. Rev. E, 1995, 51, (5), p. 4282.
    14. 14)
      • 6. Antonini, G., Martinez, S.V., Bierlaire, M., et al: ‘Behavioral priors for detection and tracking of pedestrians in video sequences’, Int. J. Comput. Vis., 2006, 69, (2), pp. 159180.
    15. 15)
      • 11. Bock, J., Beemelmanns, T., Klösges, M., et al: ‘Self-learning trajectory prediction with recurrent neural networks at intelligent intersections’. Int. Conf. on Vehicle Technology and Intelligent Transport Systems, Porto, Portugal, April 2017, pp. 346351.
    16. 16)
      • 22. Dauphin, Y.N., Vries, H.D., Chung, J., et al: ‘RMSProp and equilibrated adaptive learning rates for non-convex optimization’, CoRR, abs/1502.04390, 2015.
    17. 17)
      • 5. Kalchbrenner, N., Danihelka, I., Graves, A.: ‘Grid long short-term memory’, arXiv preprint arXiv: 1507.01526, 2015.
    18. 18)
      • 13. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, (8), pp. 17351780.
    19. 19)
      • 16. Vemula, A., Muelling, K., Oh, J.: ‘Social attention: modeling attention in human crowds’, arXiv preprint arXiv: 1710.04689v1, 2017.
    20. 20)
      • 9. Kooij, J.F.P., Schneider, N., Flohr, F., et al: ‘Context based pedestrian path prediction’. European Conf. on Computer Vision, Cham, 2014, vol. 8694, pp. 618633.
    21. 21)
      • 2. Yamaguchi, K., Berg, A.C., Ortiz, L.E., et al: ‘Who are you with and where are you going?’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA, June 2011, pp. 13451352.
    22. 22)
      • 21. Trautman, P., Ma, J., Murray, R.M., et al: ‘Robot navigation in dense human crowds: the case for cooperation’. IEEE Int. Conf. on Robotics and Automation (ICRA), 2013, pp. 21532160.
    23. 23)
      • 7. Bonabeau, E.: ‘Agent-based modeling: methods and techniques for simulating human systems’, Proc. Natl. Acad. Sci., 2002, 99, (3), pp. 72807287.
    24. 24)
      • 14. Chung, J., Gulcehre, C., Cho, K., et al: ‘Empirical evaluation of gated recurrent neural networks on sequence modeling’, arXiv preprint arXiv:1412.3555, 2014.
    25. 25)
      • 3. Greff, K., Srivastava, R.K., Koutník, J., et al: ‘LSTM: a search space odyssey’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 28, (10), pp. 22222232.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8316
Loading

Related content

content/journals/10.1049/joe.2018.8316
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address