http://iet.metastore.ingenta.com
1887

access icon openaccess Pedestrian trajectory prediction via the Social-Grid LSTM model

  • XML
    88.443359375Kb
  • PDF
    3.498208999633789MB
  • HTML
    108.466796875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8316.html;jsessionid=4ec5wntetwi3j.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8316&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Helbing, D., Molnar, P.: ‘Social force model for pedestrian dynamics’, Phys. Rev. E, 1995, 51, (5), p. 4282.
    2. 2)
      • 2. Yamaguchi, K., Berg, A.C., Ortiz, L.E., et al: ‘Who are you with and where are you going?’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA, June 2011, pp. 13451352.
    3. 3)
      • 3. Greff, K., Srivastava, R.K., Koutník, J., et al: ‘LSTM: a search space odyssey’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 28, (10), pp. 22222232.
    4. 4)
      • 4. Alahi, A., Goel, K., Ramanathan, V., et al: ‘Social LSTM: human trajectory prediction in crowded spaces’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 961971.
    5. 5)
      • 5. Kalchbrenner, N., Danihelka, I., Graves, A.: ‘Grid long short-term memory’, arXiv preprint arXiv: 1507.01526, 2015.
    6. 6)
      • 6. Antonini, G., Martinez, S.V., Bierlaire, M., et al: ‘Behavioral priors for detection and tracking of pedestrians in video sequences’, Int. J. Comput. Vis., 2006, 69, (2), pp. 159180.
    7. 7)
      • 7. Bonabeau, E.: ‘Agent-based modeling: methods and techniques for simulating human systems’, Proc. Natl. Acad. Sci., 2002, 99, (3), pp. 72807287.
    8. 8)
      • 8. Tay, M.K.C., Laugier, C.: ‘Modelling smooth paths using Gaussian processes’, in ‘Field and service robotics’ (Springer, Berlin, 2008), pp. 381390.
    9. 9)
      • 9. Kooij, J.F.P., Schneider, N., Flohr, F., et al: ‘Context based pedestrian path prediction’. European Conf. on Computer Vision, Cham, 2014, vol. 8694, pp. 618633.
    10. 10)
      • 10. Hao, X., Du, Q.H., Reynolds, M.: ‘SS-LSTM: a hierarchical LSTM model for pedestrian trajectory prediction’. IEEE Winter Conf. on Applications of Computer Vision (WACV), Lake Tahoe, USA, March 2018, pp. 11861194.
    11. 11)
      • 11. Bock, J., Beemelmanns, T., Klösges, M., et al: ‘Self-learning trajectory prediction with recurrent neural networks at intelligent intersections’. Int. Conf. on Vehicle Technology and Intelligent Transport Systems, Porto, Portugal, April 2017, pp. 346351.
    12. 12)
      • 12. Pascanu, R., Mikolov, T., Bengio, Y.: ‘On the difficulty of training recurrent neural networks’. Int. Conf. on Machine Learning (ICML), Atlanta, USA, June 2013, vol. 28, pp. 13101318.
    13. 13)
      • 13. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, (8), pp. 17351780.
    14. 14)
      • 14. Chung, J., Gulcehre, C., Cho, K., et al: ‘Empirical evaluation of gated recurrent neural networks on sequence modeling’, arXiv preprint arXiv:1412.3555, 2014.
    15. 15)
      • 15. Park, S.H., Kim, B.D., Kang, C.M., et al: ‘Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture’. IEEE Intelligent Vehicles Symp. (IV), Chang Shu, China, June 2018, pp. 16721678.
    16. 16)
      • 16. Vemula, A., Muelling, K., Oh, J.: ‘Social attention: modeling attention in human crowds’, arXiv preprint arXiv: 1710.04689v1, 2017.
    17. 17)
      • 17. Xue, H., Huynh, D.Q., Reynolds, M.: ‘Bi-prediction: pedestrian trajectory prediction based on bidirectional LSTM classification’. Int. Conf. on Digital Image Computing: Techniques and Applications, Sydney, Australia, December 2017, pp. 18.
    18. 18)
      • 18. Lee, N., Choi, W., Vernaza, P., et al: ‘Desire: distant future prediction in dynamic scenes with interacting agents’, arXiv preprint arXiv: 1704.04394, 2017.
    19. 19)
      • 19. Pellegrini, S., Ess, A., Schindler, K., et al: ‘You'll never walk alone: modeling social behavior for multi-target tracking’. IEEE 12th Int. Conf. on Computer Vision, 2009, pp. 261268.
    20. 20)
      • 20. Lerner, A., Chrysanthou, Y., Lischinski, D.: ‘Crowds by example’, in ‘Computer graphics forum’ (Wiley Online Library, 2007), vol. 26, pp. 655664.
    21. 21)
      • 21. Trautman, P., Ma, J., Murray, R.M., et al: ‘Robot navigation in dense human crowds: the case for cooperation’. IEEE Int. Conf. on Robotics and Automation (ICRA), 2013, pp. 21532160.
    22. 22)
      • 22. Dauphin, Y.N., Vries, H.D., Chung, J., et al: ‘RMSProp and equilibrated adaptive learning rates for non-convex optimization’, CoRR, abs/1502.04390, 2015.
    23. 23)
      • 23. Vaswani, A., Shazeer, N., Parmar, N., et al: ‘Attention is all you need’. Int. Conf. on Neural Information Processing Systems (NIPS), 2017, pp. 111.
    24. 24)
      • 24. Xu, K., Ba, J., Kiros, R., et al: ‘Show, attend and tell: neural image caption generation with visual attention’. 32nd Int. Conf. on Machine Learning (ICML 2015), Lile, France, July 2015, pp. 20482057.
    25. 25)
      • 25. Geronimo, D., Lopez, A.M., Sappa, A.D., et al: ‘Survey of pedestrian detection for advanced driver assistance systems’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (7), pp. 12391258.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8316
Loading

Related content

content/journals/10.1049/joe.2018.8316
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address