http://iet.metastore.ingenta.com
1887

access icon openaccess Information measure of absolute and relative quantification in double-quantitative decision-theoretic rough set model

  • XML
    313.9150390625Kb
  • PDF
    785.767578125Kb
  • HTML
    412.5029296875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8315.html;jsessionid=3n6dqhxler8pg.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8315&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Pawlak, Z.: ‘Rough sets’, J. Comput. Inf. Sci., 1982, 11, (5), pp. 341356.
    2. 2)
      • 2. Lingras, P., Chen, M., Miao, D.: ‘Qualitative and quantitative combinations of crisp and rough clustering schemes using dominance relations’, Int. J. Approx. Reason., 2014, 55, pp. 238258.
    3. 3)
      • 3. Yao, Y., Deng, X.: ‘Quantitative rough sets based on subsethood measures’, Inf. Sci., 2014, 267, pp. 306322.
    4. 4)
      • 4. Liang, D., Liu, D.: ‘Deriving three-way decisions from intuitionistic fuzzy decision-theoretic rough sets’, Inf. Sci., 2015, 300, pp. 2848.
    5. 5)
      • 5. Liang, D., Pedrycz, W., Liu, D.: ‘Determining three-way decisions with decision-theoretic rough sets using a relative value approach’, IEEE Trans. Syst., Man, Cybern.: Syst., 2017, 47, (8), pp. 17851799.
    6. 6)
      • 6. Wang, G., Ma, X., Yu, H.: ‘Monotonic uncertainty measures for attribute reduction in probabilistic rough set model’, Int. J. Approx. Reason., 2015, 59, pp. 4167.
    7. 7)
      • 7. Yao, Y.: ‘Probabilistic approaches to rough sets’, Expert Syst.., 2003, 20, pp. 287297.
    8. 8)
      • 8. Yao, Y.: ‘The superiority of three-way decisions in probabilistic rough set models’, Inf. Sci., 2011, 181, pp. 10801096.
    9. 9)
      • 9. Yao, Y.: ‘Three-way decisions with probabilistic rough sets’, Inf. Sci., 2010, 180, pp. 341353.
    10. 10)
      • 10. Yao, Y., Wong, S. K., Lingras, P.: ‘A decision-theoretic rough set model’. Proc. of Int. Symp. on Methodologies for Intelligent Systems, 1990, vol. 5, pp. 1725.
    11. 11)
      • 11. Zhang, Q., Zhang, Q., Wang, G.: ‘The uncertainty of probabilistic rough sets in multi-granulation spaces’, Int. J. Approx. Reason., 2016, 77, pp. 3854.
    12. 12)
      • 12. Liu, C., Miao, D., Zhang, N.: ‘Graded rough set model based on two universes and its properties’, Knowl.-Based Syst., 2012, 33, pp. 6572.
    13. 13)
      • 13. Yao, Y., Lin, T. Y.: ‘Graded rough set approximations based on nested neighborhood systems’. Proc. of 5th European Congress on Intelligent Techniques and Soft Computing, 1997, vol. 1, pp. 196200.
    14. 14)
      • 14. Zhang, X., Miao, D.: ‘Two basic double-quantitative rough set models for precision and graded and their investigation using granular computing’, Int. J. Approx. Reason., 2013, 54, pp. 11301148.
    15. 15)
      • 15. Fan, B., Tsang, E. C. C., Xu, W., et al: ‘Double-quantitative rough fuzzy set based decisions: a logical operators method’, Inf. Sci., 2017, 378, pp. 264281.
    16. 16)
      • 16. Li, W., Xu, W.: ‘Double-quantitative decision-theoretic rough set’, Inf. Sci., 2015, 316, pp. 5467.
    17. 17)
      • 17. Xu, W., Guo, Y.: ‘Generalized multigranulation double-quantitative decision-theoretic rough set’, Knowl.-Based Syst., 2016, 105, pp. 190205.
    18. 18)
      • 18. Zhang, X., Miao, D.: ‘An expanded double-quantitative model regarding probabilities and grades and its hierarchical double-quantitative attribute reduction’, Inf. Sci., 2015, 299, pp. 312336.
    19. 19)
      • 19. Zhang, X., Miao, D.: ‘Double-quantitative fusion of accuracy and importance: ‘systematic measure mining, benign integration construction, hierarchical attribute reduction’, Knowl.-Based Syst., 2016, 91, pp. 219240.
    20. 20)
      • 20. Zhang, X., Miao, D.: ‘Quantitative information architecture, granular computing and rough set models in the double-quantitative approximation space of precision and grade’, Inf. Sci., 2014, 268, pp. 147168.
    21. 21)
      • 21. Shannon, C. E.: ‘A mathematical theory of communication’, Bell Labs Tech. J., 1948, 27, pp. 379423, 623–656.
    22. 22)
      • 22. Beaubouef, T., Petry, F.E., Arora, G.: ‘Information-theoretic measures of uncertainty for rough sets and rough relational datasets’, Inf. Sci., 1998, 109, pp. 185195.
    23. 23)
      • 23. Bianucci, D., Cattaneo, G.: ‘Information entropy and granulation co-entropy of partitions and coverings: a summary’. Proc. Transactions on Rough sets X, 2009(LNCS, 5656), pp. 1566.
    24. 24)
      • 24. Bianucci, D., Cattaneo, G., Ciucci, D.: ‘Entropies and co-entropies of coverings with application to incomplete information systems’, Fundam. Inform., 2007, 75, pp. 77105.
    25. 25)
      • 25. Li, J., Huang, C., Qi, J., et al: ‘Three-way cognitive concept learning via multi-granularity’, Inf. Sci., 2017, 378, pp. 244263.
    26. 26)
      • 26. Liang, J., Shi, Z., Li, D., et al: ‘Information entropy, rough entropy and knowledge granulation in incomplete information systems’, Int. J. Gen. Syst., 2006, 35, pp. 641654.
    27. 27)
      • 27. Liang, J., Qian, Y.: ‘Information granules and entropy theory in information systems, science China, series F, 2008, 51, pp. 14271444.
    28. 28)
      • 28. Małyszko, D., Stepaniuk, J.: ‘Adaptive multilevel rough entropy evolutionary thresholding’, Inf. Sci., 2010, 180, (7), pp. 11381158.
    29. 29)
      • 29. Sen, D., Pal, S. K.: ‘Generalized rough sets, entropy, and image ambiguity measures’, IEEE Trans. Syst., Man, Cybern., Part B, 2009, 39, (1), pp. 117128.
    30. 30)
      • 30. Wierman, M.: ‘Measuring uncertainty in rough set theory’, Int. J. Gen. Syst., 1999, 28, pp. 283297.
    31. 31)
      • 31. Duntsch, I., Gediga, G.: ‘Uncertainty measures of rough set prediction’, Artif. Intell., 1998, 106, (1), pp. 109137.
    32. 32)
      • 32. Liu, D., Li, T., Li, H.: ‘A multiple-category classification approach with decision-theoretic rough sets’, FundamentaInformaticae, 2012, 115, pp. 173188.
    33. 33)
      • 33. Ma, Z., Mi, J.: ‘Boundary region-based rough sets and uncertainty measures in the approximation space’, Inf. Sci., 2016, 370, pp. 239255.
    34. 34)
      • 34. Qian, Y., Liang, J.: ‘Combination entropy and combination granulation in rough set theory’, J. Uncertain. Fuzziness Knowl.-Based Syst., 2008, 16, (2), pp. 179193.
    35. 35)
      • 35. Słowinski, R., Stefanowski, J.: ‘Handing various types of uncertainty in the rough set approach’, in Ziarko, W.P. (Ed.): ‘Rough sets, fuzzy sets and knowledge discovery’ (Springer, Banff, 1993), pp. 366376.
    36. 36)
      • 36. Yao, Y.: ‘Information-theoretic measures for knowledge discovery and data mining’, in Karmeshu, (Ed.): ‘Entropy measures, maximum entropy principle and emerging applications’ (Springer-Verlag, Berlin, 2003), pp. 115136.
    37. 37)
      • 37. Zhu, P., Wen, Q.: ‘Entropy and co-entropy of a covering approximation space’, Int. J. Approx. Reason., 2012, 53, pp. 528540.
    38. 38)
      • 38. Zhu, P., Wen, Q.: ‘Information-theoretic measures associated with rough set approximations’, Inf. Sci., 2012, 12, pp. 3343.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8315
Loading

Related content

content/journals/10.1049/joe.2018.8315
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address