http://iet.metastore.ingenta.com
1887

access icon openaccess Attribute reduction in interval-valued fuzzy ordered decision tables via evidence theory

  • XML
    341.01171875Kb
  • PDF
    828.701171875Kb
  • HTML
    520.552734375Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8312.html;jsessionid=e8340s1v31jh.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8312&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Pawlak, Z.: ‘Rough sets’, Int. J. Comput. Inf. Sci., 1982, 11, pp. 341356.
    2. 2)
      • 2. Pawlak, Z.: ‘Rough sets: theoretical aspects of reasoning about data’ (Kluwer Academic Publishers, Boston, 1991).
    3. 3)
      • 3. Dempster, A.P.: ‘Upper and lower probabilities induced by a multivalued mapping’, in Dempster, A.P. (ED.): ‘classic works of the Dempster-Shafer theory of belief functions’ (Springer, Berlin, Heidelberg, 2008), pp. 325339.
    4. 4)
      • 4. Pawlak, Z., Skowron, A.: ‘Rudiments of rough sets’, Inf. Sci., 2007, 177, (1), pp. 327.
    5. 5)
      • 5. Stefanowski, J., Tsoukis, A.: ‘Incomplete information tables and rough classification’, Comput. Intell., 2001, 17, pp. 545566.
    6. 6)
      • 6. Jeon, G., Kim, D., Jeong, J.: ‘Rough sets attributes reduction based expert system in interlaced video sequences’, IEEE Trans. Consum. Electron., 2006, 52, pp. 13481355.
    7. 7)
      • 7. Greco, S., Matarazzo, B., Slowinski, R.: ‘Rough sets theory for multicriteria decision analysis’, Eur. J. Oper. Res., 2001, 129, pp. 147.
    8. 8)
      • 8. Greco, S., Matarazzo, B., Slowinski, R.: ‘Rough approximation by dominance relations’, Int. J. Intell. Syst., 2002, 17, pp. 153171.
    9. 9)
      • 9. Slwiński, R., Greco, S., Matarazzo, B.: ‘Rough-set-based decision support’, in Burke, E.K., Kendall, G. (Eds.): ‘Search methodologies: introductory tutorials in optimization and decision support techniques’ (Springer, Boston, 2014, 2nd edn.), pp. 557609.
    10. 10)
      • 10. Du, W.S., Hu, B.Q.: ‘Approximate distribution reducts in inconsistent interval-valued ordered decision tables’, Inf. Sci., 2014, 271, pp. 93114.
    11. 11)
      • 11. Du, W.S., Hu, B.Q.: ‘Dominance-based rough set approach to incomplete ordered information systems’, Inf. Sci., 2016, 346–347, pp. 106129.
    12. 12)
      • 12. Li, S.Y., Li, T.R.: ‘Incremental update of approximations in dominance-based rough sets approach under the variation of attribute values’, Inf. Sci., 2015, 294, pp. 348361.
    13. 13)
      • 13. Shao, M.W., Zhang, W.X.: ‘Dominance relation and rules in an incomplete ordered information system’, Int. J. Intell. Syst., 2005, 20, pp. 1327.
    14. 14)
      • 14. Susmaga, R.: ‘Reducts and constructs in classic and dominance-based rough sets approach’, Inf. Sci., 2014, 271, pp. 4564.
    15. 15)
      • 15. Zhang, H.Y., Leung, Y., Zhou, L.: ‘Variable-precision-dominance-based rough set approach to interval-valued information systems’, Inf. Sci., 2013, 244, pp. 7591.
    16. 16)
      • 16. Ślęzak, D.: ‘On generalized decision functions: reducts, networks and ensembles’, Lect. Notes Comput. Sci., 2015, 9437, pp. 1323.
    17. 17)
      • 17. Skowron, A., Grzymala-Busse, J.W., Kacprzyk, J.: ‘From rough set theory to evidence theory’, in Yager, R.R., Fedrizzi, M. (Eds.): ‘Advances in the Dempster-Shafer theory of evidence’ (John Wiley & Sons, New York, 1994), pp. 193236.
    18. 18)
      • 18. Yao, Y.Y., Lingras, P.J.: ‘Interpretations of belief functions in the theory of rough sets’, Inf. Sci., 1998, 104, pp. 81106.
    19. 19)
      • 19. Ślęzak, D.: ‘Decision value oriented decomposition of data tables’, Lect. Notes Comput. Sci., 1997, 1325, pp. 487496.
    20. 20)
      • 20. Chen, D.G., Li, W.L., Zhang, X., et al: ‘Evidence-theory-based numerical algorithms of attribute reduction with neighborhood-covering rough sets’, Int. J. Approx. Reason., 2014, 55, pp. 908923.
    21. 21)
      • 21. Trabelsi, S., Elouedi, Z., Lingras, P.: ‘Classification systems based on rough sets under the belief function framework’, Int. J. Approx. Reason., 2011, 52, pp. 14091432.
    22. 22)
      • 22. Wu, W.Z.: ‘Attribute reduction based on evidence theory in incomplete decision systems’, Inf. Sci., 2008, 178, pp. 13551371.
    23. 23)
      • 23. Wu, W.Z.: ‘Knowledge reduction in random incomplete decision tables via evidence theory’, Fundam. Inform., 2012, 115, pp. 203218.
    24. 24)
      • 24. Xu, W.H., Zhang, X.Y., Zhong, J.M., et al: ‘Attribute reduction in ordered information systems based on evidence theory’, Knowl. Inf. Syst., 2010, 25, pp. 169184.
    25. 25)
      • 25. Qian, Y.H., Liang, J.Y., Dang, C.Y.: ‘Interval ordered information systems’, Comput. Math. Appl., 2008, 56, pp. 19942009.
    26. 26)
      • 26. Yang, X.B., Yu, D.J., Yang, J.Y., et al: ‘Dominance-based rough set approach to incomplete interval-valued information system’, Data Knowl. Eng., 2009, 68, pp. 13311347.
    27. 27)
      • 27. Yang, X.B., Qi, Y., Yu, D.J., et al: ‘α-Dominance relation and rough sets in interval-valued information systems’, Inf. Sci., 2015, 294, pp. 334347.
    28. 28)
      • 28. Wang, H., Shi, H.: ‘Knowledge reduction based on evidence reasoning theory in interval ordered information systems’. Int. Conf. on Intelligent Computing Theories and Applications, Huangshan, China, July 2012, pp. 2734.
    29. 29)
      • 29. Du, W. S., Hu, B.Q.: ‘Attribute reduction in ordered decision tables via evidence theory’, Inf. Sci., 2016, 364–365, pp. 91110.
    30. 30)
      • 30. Shafer, G.: ‘A mathematical theory of evidence’ (Princeton University Press, Princeton, NJ, 1976).
    31. 31)
      • 31. Wang, Z.Y., Klir, G.J.: ‘Generalized measure theory’ (Springer-Verlag, New York, 2008).
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8312
Loading

Related content

content/journals/10.1049/joe.2018.8312
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address