http://iet.metastore.ingenta.com
1887

access icon openaccess Synthetic training samples for enhanced locality-constrained dictionary learning

  • PDF
    2.7505578994750977MB
  • XML
    105.4130859375Kb
  • HTML
    124.455078125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8311.html;jsessionid=fdxflra33vo7.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8311&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Aharon, M., Elad, M., Bruckstein, A., et al: ‘K-svd: An algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), p. 4311.
    2. 2)
      • 2. Zhang, Q., Li, B.: ‘Discriminative K-SVD for dictionary learning in face recognition’. 2010 IEEE 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Francisco, USA, June 2010, pp. 26912698.
    3. 3)
      • 3. Jiang, Z., Lin, Z., Davis, L.S.: ‘Learning a discriminative dictionary for sparse coding via label consistent K-SVD’. 2011 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Colorado Springs, USA, June 2011, pp. 16971704.
    4. 4)
      • 4. Akhtar, N., Mian, A.S., Porikli, F.: ‘Joint discriminative Bayesian dictionary and classifier learning’. Computer Vision and Pattern Recognition (CVPR), 2017, pp. 39193928.
    5. 5)
      • 5. Li, Z., Lai, Z., Xu, Y., et al: ‘A locality-constrained and label embedding dictionary learning algorithm for image classification’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (2), pp. 278293.
    6. 6)
      • 6. Zeng, S., Zhang, B., Du, Y.: ‘Joint distances by sparse representation and locality-constrained dictionary learning for robust leaf recognition’, Comput. Electron. Agric., 2017, 142, pp. 563571.
    7. 7)
      • 7. Zhang, Y., Zeng, S., Zeng, W., et al: ‘GNN-CRC: discriminative collaborative representation-based classification via Gabor wavelet transformation and nearest neighbor’, J. Shanghai Jiaotong Univ., Sci., 2018, pp. 19.
    8. 8)
      • 8. Zeng, S., Gou, J., Yang, X.: ‘Improving sparsity of coefficients for robust sparse and collaborative representation-based image classification’, Neural Comput. Appl., 2017, 8, pp. 114.
    9. 9)
      • 9. Lu, C., Shi, J., Jia, J.: ‘Scale adaptive dictionary learning’, IEEE Trans. Image Process., 2014, 23, (2), pp. 837847.
    10. 10)
      • 10. Sadeghi, M., Babaie-Zadeh, M., Jutten, C.: ‘Learning overcomplete dictionaries based on atom-by-atom updating’, IEEE Trans. Signal Process., 2014, 62, (4), pp. 883891.
    11. 11)
      • 11. Ryu, Y.S., Oh, S.Y.: ‘Simple hybrid classifier for face recognition with adaptively generated virtual data’, Pattern Recognit. Lett., 2002, 23, (7), pp. 833841.
    12. 12)
      • 12. Bin, T., Siwei, L., Hua, H.: ‘High performance face recognition system by creating virtual sample’. Proc. 2003 Int. Conf. Neural Networks and Signal Processing, vol. 2, 2003, pp. 972975.
    13. 13)
      • 13. Sharma, A., Dubey, A., Tripathi, P., et al: ‘Pose invariant virtual classifiers from single training image using novel hybrid-eigenfaces’, Neurocomputing, 2010, 73, (10–12), pp. 18681880.
    14. 14)
      • 14. Shan, G.: ‘Virtual sample generating for face recognition from a single training sample per person’, Sci. Technol. Eng., 2013, 13, (14), pp. 39083911.
    15. 15)
      • 15. Xu, Y., Li, Z., Zhang, B., et al: ‘Sample diversity, representation effectiveness and robust dictionary learning for face recognition’, Inf. Sci., 2017, 375, pp. 171182.
    16. 16)
      • 16. Rubinstein, R., Zibulevsky, M., Elad, M.: ‘Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit’ (Computer Science Department, Technion, Haifa, Israel, 2008).
    17. 17)
      • 17. Xu, Y., Li, X., Yang, J., et al: ‘Integrating conventional and inverse representation for face recognition’, IEEE Trans. Cybern., 2014, 44, (10), pp. 17381746.
    18. 18)
      • 18. Martinez, A.M.: ‘The AR face database’, CVC Technical Report24, 1998.
    19. 19)
      • 19. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: ‘From few to many: illumination cone models for face recognition under variable lighting and pose’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 643660.
    20. 20)
      • 20. Huang, G.B., Mattar, M., Berg, T., et al: ‘Labeled faces in the wild: a database for studying face recognition in unconstrained environments’. Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France, October 2008.
    21. 21)
      • 21. Fei-Fei, L., Fergus, R., Perona, P.: ‘Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories’, Comput. Vis. Image Underst., 2007, 106, (1), pp. 5970.
    22. 22)
      • 22. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, SIAM J. Imag. Sci., 2009, 2, (1), pp. 183202.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8311
Loading

Related content

content/journals/10.1049/joe.2018.8311
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address