http://iet.metastore.ingenta.com
1887

access icon openaccess Multi-objective social spider optimisation algorithm

  • XML
    111.486328125Kb
  • PDF
    1.2295846939086914MB
  • HTML
    120.42578125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8310.html;jsessionid=3lbcouesdumhi.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8310&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Erik, C., Miguel, C., Erik, C.: ‘A swarm optimization algorithm inspired in the behavior of the social- spider’, Expert Syst. Appl., 2014, 40, (1), pp. 412425.
    2. 2)
      • 2. Robic, T., Filipic, B.: ‘Differential evolution for multi-objective optimization’. EMO2005, Guanajuato, Mexico, 2005(LNCS), pp. 520533.
    3. 3)
      • 3. Coello, C.A.C., Pulido, G.T., Carlos, C.: ‘Handing multiple objectives with particle swarm optimization’, Evol. Comput., 2004, 8, (3), pp. 256279.
    4. 4)
      • 4. Zitzler, E., Deb, K., Thiele, L.: ‘Comparison of multi-objective evolutionary algorithm: empirical results’, Evol. Comput., 2000, 8, (1), pp. 173195.
    5. 5)
      • 5. Rao, R.V., Patel, V.: ‘Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm’, Appl. Math. Model., 2013, 37, (3), pp. 11471162.
    6. 6)
      • 6. Erik, C., Miguel, C.: ‘A new algorithm inspired in the behavior of social-spider for constrained optimization’, Expert Syst. Appl., 2014, 40, (1), pp. 412425.
    7. 7)
      • 7. Conway, J.T.: ‘Analytical solutions for the newtonian gravitational field induced by matter within axisymmetric boundaries’, Mon. Not. R. Astron. Soc., 2000, 316, (3), pp. 540554.
    8. 8)
      • 8. Ahmadi, M.H., Ahmadi, M.A.: ‘Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII’, Renew. Sustain. Energy Rev., 2016, 60, (1), pp. 784794.
    9. 9)
      • 9. Fang, X., Gong, R., Dawei, L.I.: ‘Multi-objective particle swarm optimization algorithm based on cosine distance’, Electron. Technol., 2016, 29, (3), pp. 4852.
    10. 10)
      • 10. Zhang, Y., Bao, F., Wang, S.: ‘Protection-type transfer learning clustering algorithm with cosine distance metric’, Comput. Eng. Appl., 2015, 51, (23), pp. 131140.
    11. 11)
      • 11. Li, H., Su, Y.: ‘An improved density estimation method in NSGA2’. Int. Conf. Automatic Control and Artificial Intelligence, Xiamen, China, March 2012, pp. 429432.
    12. 12)
      • 12. Kim, M., Hiroyasu, T., Miki, M, et al: ‘Miki, improving the performance of the strength pareto evolutionary algorithm 2’, Parallel Probl. Solving from Nat. - PPSN VIII, 2004, 3242, (4), pp. 742751.
    13. 13)
      • 13. Mshwani, W.K., Salhi, A., Yeniay, O., et al: ‘Hybrid non-dominated sorting genetic algorithm with adaptive operators selection’, Appl. Soft Comput., 2017, 56, (1), pp. 118.
    14. 14)
      • 14. Section, I.: ‘An enhanced differential evolution based algorithm with simulated annealing for solving multi-objective optimization problems’, J. Appl. Math., 2014, (2), pp. 15651578.
    15. 15)
      • 15. Feng, Y., Zheng, B., Li, Z.: ‘Exploratory study of sorting particle swarm optimizer for multi-objective design optimization’, Math. Comput. Model., 2010, 52, (11), pp. 19661975.
    16. 16)
      • 16. Deb, K., Mohan, M., Mishra, S.: ‘Evaluating the ɛ -domination based multi-objective evolutionary algorithm for a quick computation of pareto-optimal solutions’. Evol. Comput., 2014, 13, (4), pp. 501525.
    17. 17)
      • 17. Tsai, S.J., Sun, T.Y., Liu, C.C., et al: ‘An improved multi-objective particle swarm optimizer for multi-objective problems’, Expert Syst. Appl., 2010, 37, (8), pp. 58725886.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8310
Loading

Related content

content/journals/10.1049/joe.2018.8310
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address