http://iet.metastore.ingenta.com
1887

access icon openaccess Combining HWEBING and HOG-MLBP features for pedestrian detection

  • PDF
    2.163445472717285MB
  • XML
    75.251953125Kb
  • HTML
    85.9619140625Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8308.html;jsessionid=q1arobw061dv.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8308&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Zhong, Z., Zhang, B., Lu, G., et al: ‘An adaptive background modeling method for foreground segmentation’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (5), pp. 11091121.
    2. 2)
      • 2. Yang, T., Jing, L.I., Pan, Q., et al: ‘Scene modeling and statistical learning based robust pedestrian detection algorithm’, Acta Autom. Sin., 2010, 36, (4), pp. 499508.
    3. 3)
      • 3. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Diego, USA, June 2005, pp. 886893.
    4. 4)
      • 4. Li, W., Dai, D., Tan, M., et al: ‘Fast algorithms for linear and Kernel SVM + ’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 22582266.
    5. 5)
      • 5. Maji, S., Berg, A.C., Malik, J.: ‘Classification using intersection kernel support vector machines is efficient’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, USA, June 2008, pp. 18.
    6. 6)
      • 6. Wu, J.: ‘Efficient HIKSVM learning for image classification’, IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc., 2012, 21, (10), pp. 44424453.
    7. 7)
      • 7. Ojala, T., Harwood, I.: ‘A comparative study of texture measures with classification based on feature distributions’, Pattern Recognit., 1996, 29, (1), pp. 5159.
    8. 8)
      • 8. Tan, X., Triggs, B.: ‘Enhanced local texture feature sets for face recognition under difficult lighting conditions’, IEEE Trans. Image Process., 2010, 19, (6), pp. 16351650.
    9. 9)
      • 9. Mu, Y., Yan, S., Liu, Y., et al: ‘Discriminative local binary patterns for human detection in personal album’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Anchorage, USA, June 2008, pp. 18.
    10. 10)
      • 10. Heikkilä, M., Pietikäinen, M., Schmid, C.: ‘Description of interest regions with local binary patterns’, Pattern Recognit., 2009, 42, (3), pp. 425436.
    11. 11)
      • 11. Papageorgiou, C., Poggio, T.: ‘A trainable system for object detection’, Int. J. Comput. Vis., 2000, 38, (1), pp. 1533.
    12. 12)
      • 12. Walk, S., Majer, N., Schindler, K., et al: ‘New features and insights for pedestrian detection’. Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Francisco, USA, June 2010, pp. 10301037.
    13. 13)
      • 13. Dollár, P., Tu, Z., Perona, P., et al: ‘Integral channel features’. Proc. British Machine Vision Conf., London, UK, September 2009, pp. 111.
    14. 14)
      • 14. Wang, X.: ‘An HOG-LBP human detector with partial occlusion handling’. Proc. Int. Conf. Computer Vision, Kyoto, Japan, September 2009, pp. 3239.
    15. 15)
      • 15. Dollár, P., Belongie, S., Perona, P.: ‘The fastest pedestrian detector in the west’. Proc. BMVC, Aberystwyth, UK, September 2010, pp. 111.
    16. 16)
      • 16. Benenson, R., Mathias, M., Timofte, R., et al: ‘Pedestrian detection at 100 frames per second’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, June 2012, pp. 29032910.
    17. 17)
      • 17. Cheng, M.M., Zhang, Z., Lin, W.Y., et al: ‘Bing: binarized normed gradients for objectness estimation at 300fps’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, USA, June 2014, pp. 32863293.
    18. 18)
      • 18. Mao, J., Xiao, T., Jiang, Y., et al: ‘What can help pedestrian detection?’. Proc. IEEE Conf. Computer Vision Pattern Recognition, Honolulu, USA, July 2017, pp. 60346043.
    19. 19)
      • 19. Redmon, J., Divvala, S., Girshick, R., et al: ‘You only look once: unified, real-time object detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 779788.
    20. 20)
      • 20. Chi, J.T., Chi, E.C., Baraniuk, R.G.: ‘K-pod: a method for k-means clustering of missing data’, Am. Stat., 2016, 70, (1), pp. 9199.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8308
Loading

Related content

content/journals/10.1049/joe.2018.8308
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address