http://iet.metastore.ingenta.com
1887

access icon openaccess Linear representation of intra-class discriminant features for small-sample face recognition

  • HTML
    125.4638671875Kb
  • XML
    109.244140625Kb
  • PDF
    2.1037206649780273MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8306.html;jsessionid=2b1r2s6sg1m38.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8306&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Turk, M., Pentland, A.. ‘Eigenfaces for recognition’, J. Cogn. Neurosci., 1991, 3, (1), pp. 7186.
    2. 2)
      • 2. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. Fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
    3. 3)
      • 3. Liu, C., Wechsler, H.: ‘Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition’, IEEE Trans. Image Process., 2002, 11, (4), pp. 467476.
    4. 4)
      • 4. Yang, J., Zhang, D., Frangi, A.F., et al: ‘Two-dimensional PCA: a new approach to appearance-based face representation and recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (1), pp. 131137.
    5. 5)
      • 5. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, USA, 2015.
    6. 6)
      • 6. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’. IEEE Conf. Computer Vision and Pattern Recognition, 2016.
    7. 7)
      • 7. Liu, W., Wen, Y., Yu, Z., et al: ‘Sphereface: deep hypersphere embedding for face recognition’. IEEE Conf. Computer Vision and Pattern Recognition, 2017, p. 1.
    8. 8)
      • 8. Yang, J., Zhang, D., Yong, X, et al: ‘Two-dimensional discriminant transform for face recognition’, Pattern Recognit., 2005, 38, (7), pp. 11251129.
    9. 9)
      • 9. Xu, Y., Zhang, D.: ‘Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme’, Opt. Eng., 2010, 49, (3), p. 037002.
    10. 10)
      • 10. Kwak, K.-C., Pedrycz, W.: ‘Face recognition using a fuzzy Fisherface classifier’, Pattern Recognit., 2005, 38, (10), pp. 17171732.
    11. 11)
      • 11. Song, X., et al: ‘An optimal symmetrical null space criterion of Fisher discriminant for feature extraction and recognition’, Soft Comput., 2011, 15, (2), pp. 281293.
    12. 12)
      • 12. Liu, Q., Lu, H., Ma, S.: ‘Improving kernel Fisher discriminant analysis for face recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 4249.
    13. 13)
      • 13. Sugiyama, M.: ‘Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis’, J. Mach. Learn. Res., 2007, 8, pp. 10271061.
    14. 14)
      • 14. Wang, Z., Sun, X.: ‘Multiple kernel local Fisher discriminant analysis for face recognition’, Signal Process., 2013, 93, (6), pp. 14961509.
    15. 15)
      • 15. Huang, H., Feng, H., Peng, C.: ‘Complete local Fisher discriminant analysis with Laplacian score ranking for face recognition’, Neurocomputing, 2012, 89, pp. 6477.
    16. 16)
      • 16. Rahulamathavan, Y., Phan, R.C.W., Chambers, J.A., et al: ‘Facial expression recognition in the encrypted domain based on local Fisher discriminant analysis’, IEEE Trans. Affective Comput., 2013, 4, (1), pp. 8392.
    17. 17)
      • 17. Wright, J., Yang, A., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    18. 18)
      • 18. Wright, J., Ma, Y., Mairal, J., et al: ‘Sparse representation for computer vision and pattern recognition’, Proc. IEEE, 2010, 98, (6), pp. 10311044.
    19. 19)
      • 19. Xu, Y., Fang, X., Li, X., et al: ‘Data uncertainty in face recognition’, IEEE Trans. Cybern., 2014, 44, (10), pp. 19501961.
    20. 20)
      • 20. Zhang, L., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: which helps face recognition?’. Proc. ICCV, Barcelona, Spain, 2011.
    21. 21)
      • 21. Xu, Y., Zhang, D., Yang, J., et al: ‘A two-phase test sample sparse representation method for use with face recognition’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (9), pp. 12551262.
    22. 22)
      • 22. Yang, M., Zhang, L., Yang, J., et al: ‘Regularized robust coding for face recognition’, IEEE Trans. Image Process., 2013, 22, (5), pp. 17531766.
    23. 23)
      • 23. Naseem, I., Togneri, R., Bennamoun, M.: ‘Linear regression for face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (11), pp. 21062112.
    24. 24)
      • 24. Xu, Y., Li, X., Yang, J., et al: ‘Integrating conventional and inverse representation for face recognition’, IEEE Trans. Cybern., 2014, 44, (10), pp. 17381746.
    25. 25)
      • 25. Zhang, Z., Xu, Y., Yang, J., et al: ‘A survey of sparse representation: algorithms and applications’, IEEE. Access., 2017, 3, pp. 490530.
    26. 26)
      • 26. Deng, W., Hu, J., Guo, J.: ‘Extended SRC: undersampled face recognition via intraclass variant dictionary’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (9), pp. 18641870.
    27. 27)
      • 27. Shao, C., Song, X., Feng, Z.H., et al: ‘Dynamic dictionary optimization for sparse-representation-based face classification using local difference images’, Inf. Sci., 2017, 393, pp. 114.
    28. 28)
      • 28. Xu, Y., Li, Z., Zhang, B., et al: ‘Sample diversity, representation effectiveness and robust dictionary learning for face recognition’, Inf. Sci., 2017, 375, (C), pp. 171182.
    29. 29)
      • 29. Ross, A., Jain, A.: ‘Information fusion in biometrics.’, Pattern Recognit. Lett., 2003, 24, (13), pp. 21152125.
    30. 30)
      • 30. Kong, A., Zhang, D., Kamel, M.: ‘Palmprint identification using feature-level fusion’, Pattern Recognit., 2006, 39, (3), p. 478.
    31. 31)
      • 31. Arigbabu, O.A., Ahmad, S.M.S., Adnan, W.A.W., et al: ‘Integration of multiple soft biometrics for human identification’, Pattern Recognit. Lett., 2015, 68, p. 278.
    32. 32)
      • 32. Zhang, D., ed.: ‘Advanced pattern recognition technologies with applications to biometrics’ (Information Science Reference, Hershey, PA, USA, 2009).
    33. 33)
      • 33. Pong, K.-H., Lam, K.-M.: ‘Multi-resolution feature fusion for face recognition’, Pattern Recognit., 2014, 47, (2), pp. 556567.
    34. 34)
      • 34. Chen, W.S., Dai, X., Pan, B., et al: ‘A novel discriminant criterion based on feature fusion strategy for face recognition’, Neurocomputing, 2015, 159, pp. 6777.
    35. 35)
      • 35. Heap, T., Samaria, F.: ‘Real-time hand tracking and gesture recognition using smart snakes’. Proc. Interface to Human and Virtual Worlds, Montpellier, France, 1995, p. 50.
    36. 36)
      • 36. Martinez, A.M.: ‘The AR face database’. CVC Technical Report, 1998.
    37. 37)
      • 37. Messer, K., Matas, J., Kittler, J., et al: ‘XM2VTSDB: the extended M2VTS database’. Second Int. Conf. Audio and Video-Based Biometric Person Authentication, Crans-Montana, Switzerland, 1999, p. 964.
    38. 38)
      • 38. Xu, Y., Jin, Z.: ‘Down-sampling face images and low-resolution face recognition’. Third Int. Conf. Innovative Computing Information and Control 2008. ICICIC'08, Dalian, China, 2008.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8306
Loading

Related content

content/journals/10.1049/joe.2018.8306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address