http://iet.metastore.ingenta.com
1887

access icon openaccess Optimisation algorithm for decision trees and the prediction of horizon displacement of landslides monitoring

  • PDF
    3.106175422668457MB
  • HTML
    53.3525390625Kb
  • XML
    51.33203125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8305.html;jsessionid=5b7t49lkbmpfi.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8305&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Duan, G., Niu, R., Ling, P., et al: ‘A landslide displacement prediction research based on optimization parameter ARIMA model under the inducing factors’, Geomatics Inf. Sci. Wuhan Univ., 2017, 42, (4), pp. 531536.
    2. 2)
      • 2. Conte, E., Donato, A., Troncone, A.: ‘A simplified method for predicting rainfall-induced mobility of active landslides’, Landslides, 2016, 14, (1), pp. 111.
    3. 3)
      • 3. Wu, X., Zhan, F.B., Zhang, K., et al: ‘Application of a two-step cluster analysis and the apriori algorithm to classify the deformation states of two typical colluvial landslides in the three gorges, China’, Environ. Earth Sci., 2016, 75, (2), pp. 146153.
    4. 4)
      • 4. Caracciolo, D., Arnone, E., Conti, F.L., et al: ‘Exploiting historical rainfall and landslide data in a spatial database for the derivation of critical rainfall thresholds’, Environ. Earth Sci., 2017, 76, (5), p. 222.
    5. 5)
      • 5. Mao, Y., Zhang, M., Sun, P., et al: ‘Landslide susceptibility assessment using uncertain decision tree model in loess areas’, Environ. Earth Sci., 2017, 76, (22), p. 752.
    6. 6)
      • 6. Salimi, A., Rostami, J., Moormann, C., et al: ‘Examining feasibility of developing a rock mass classification for hard rock tbm application using non-linear regression, regression tree and generic programming’, Geotech. Geol. Eng., 2017, 36, (2), pp. 11451159.
    7. 7)
      • 7. Sachdeva, S., Bhatia, T., Verma, A.K.: ‘Gis-based evolutionary optimized gradient boosted decision trees for forest fire susceptibility mapping’, Nat. Hazards, 2018, 92, (3), pp. 13991418.
    8. 8)
      • 8. Patri, A., Patnaik, Y.: ‘Random forest and stochastic gradient tree boosting based approach for the prediction of airfoil self-noise ⋆’, Procedia Comput. Sci., 2015, 46, pp. 109121.
    9. 9)
      • 9. Naghibi, S.A., Ahmadi, K., Daneshi, A.: ‘Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping’, Water Res. Manage, 2017, 31, (9), pp. 115.
    10. 10)
      • 10. Pham, B.T., Bui, D.T., Prakash, I.: ‘Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study’, Geotech. Geol. Eng., 2017, 35, (6), pp. 25972611.
    11. 11)
      • 11. Tan, F., Hu, X., He, C., et al: ‘Identifying the main control factors for different deformation stages of landslide’, Geotech. Geol. Eng., 2017, (2), pp. 114.
    12. 12)
      • 12. Zhang, Y., Hu, X., Tannant, D.D., et al: ‘Field monitoring and deformation characteristics of a landslide with piles in the three gorges reservoir area’, Landslides, 2018, 15, (3), pp. 581592.
    13. 13)
      • 13. Xiao, R., He, X.: ‘Real-time landslide monitoring of pubugou hydropower resettlement zone using continuous gps’, Nat. Hazards, 2013, 69, (3), pp. 16471660.
    14. 14)
      • 14. Xu, J.W., Liang, J.L.: ‘Research on distributed file system with hadoop’, Commun. Comput. Inf. Sci., 2012, 345, pp. 148155.
    15. 15)
      • 15. Zhang, M.Z., Meng-Liang, Y.U., Yong, W., et al: ‘Designing and building the national geo-environment monitoring data warehouse’, Earth Sci., 2013, 38, (6), pp. 13471355.
    16. 16)
      • 16. Qiang, Y., Pei, B., Wu, W., et al: ‘Improvement of path analysis algorithm in social networks based on hbase’, J. Comb. Optim., 2014, 28, (3), pp. 588599.
    17. 17)
      • 17. Tang, Z., Fu, Z., Gong, Z., et al: ‘A parallel conditional random fields model based on spark computing environment’, J. Grid Comput., 2017, 15, (3), pp. 120.
    18. 18)
      • 18. Torlay, L., Perrone-Bertolotti, M., Thomas, E., et al: ‘Machine learning–XGboost analysis of language networks to classify patients with epilepsy’, Brain. Inform., 2017, 4, (3), pp. 159169.
    19. 19)
      • 19. Huang, T., Wang, Y., Wang, Z., et al: ‘Distributed traffic flow data prediction system based on spark’, Appl. Res. Comput., 2018, 35, (2), pp. 405416.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8305
Loading

Related content

content/journals/10.1049/joe.2018.8305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address