http://iet.metastore.ingenta.com
1887

access icon openaccess Bi-directional CRC algorithm using CNN-based features for face classification

  • HTML
    156.59375Kb
  • XML
    118.365234375Kb
  • PDF
    2.374955177307129MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8304.html;jsessionid=2sqb2kdvjhp1p.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8304&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Gu, G., Hou, Z., Chen, C., et al: ‘A dimensionality reduction method based on structured sparse representation for face recognition’, Artif. Intell. Rev., 2016, 46, (4), pp. 113.
    2. 2)
      • 2. Ma, X., Zhuang, W., Li, Y., et al: ‘Sparse representation based undersampled face recognition with shared prototype auxiliary dictionaries’, Neurocomputing, 2017, 239, pp. 5868.
    3. 3)
      • 3. Chang, X.P., Zheng, Z.L., Xie, C.M.: ‘Sparse representation-based face recognition for single sample’, Comput. Eng., 2010, 36, (21), pp. 175177.
    4. 4)
      • 4. Wright, J., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    5. 5)
      • 5. Zhang, L., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: which helps face recognition’. Proc. IEEE Int. Conf. on Computer Vision, Barcelona, Spain, November 2011, pp. 471478.
    6. 6)
      • 6. Beymer, D., Poggio, T.: ‘Face recognition from one example view’. Int. Conf. on Computer Vision (ICCV), Cambridge, USA, June 1995.
    7. 7)
      • 7. Vetter, T.: ‘Synthesis of novel views from a single face image’, Int. J. Comput. Vis., 1998, 28, (2), pp. 102116.
    8. 8)
      • 8. Elhamifar, E., Vidal, R.: ‘Robust classification using structured sparse representation’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA, June 2011.
    9. 9)
      • 9. Zhuang, L.S., Yang, A.Y., Zhou, Z.H., et al: ‘Single-sample face recognition with image corruption and misalignment via sparse illumination transfer’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Portland, USA, June 2013.
    10. 10)
      • 10. Deng, W.H., Hu, J.N., Guo, J., et al: ‘Robust, accurate and efficient face recognition from a single training image: a uniform pursuit approach’, Pattern Recognit., 2010, 43, pp. 17481762.
    11. 11)
      • 11. Deng, W., Hu, J., Guo, J.: ‘Extended SRC: undersampled face recognition via intraclass variant dictionary’, Pattern Anal. Mach. Intell., 2012, 34, pp. 18641870.
    12. 12)
      • 12. Su, M.C., Chou, C.H.: ‘Application of associative memory in human face detection’. Int. Joint Conf. on Neural Networks (IJCNN), Washington DC, USA, July 1999.
    13. 13)
      • 13. Saha, S., Bandyopadhyay, S.: ‘A symmetry based face detection technique’. WIE National Symp. on Emerging Technology (WieNSET), Calcutta, India, June 2007.
    14. 14)
      • 14. Saber, E., Tekalp, A.M.: ‘Frontal-view face detection and facial feature extraction using color, shape and symmetry based cost functions’, Pattern Recognit. Lett., 1998, 19, (8), pp. 669680.
    15. 15)
      • 15. Xu, Y., Li, X., Yang, J., et al: ‘Integrate the original face image and its mirror image for face recognition’, Neurocomputing, 2014, 131, (7), pp. 191199.
    16. 16)
      • 16. Xu, Y., Zhu, X., Li, Z., et al: ‘Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition’, Pattern Recognit., 2013, 46, (4), pp. 11511158.
    17. 17)
      • 17. Xu, Y., Li, X.L., Yang, J., et al: ‘Integrating conventional and inverse representation for face recognition’, IEEE Trans. Cybern., 2014, 44, (10), pp. 17381746.
    18. 18)
      • 18. Bouvrie, J.: ‘Notes on convolutional neural networks’, Neural Nets, 2006, pp. 3844.
    19. 19)
      • 19. Gu, J., Wang, Z., Kuen, J., et al: ‘Recent advances in convolutional neural networks’, Comput. Sci., 2015, arXiv preprint arXiv: 1512.07108.
    20. 20)
      • 20. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, Comput. Sci., 2014, arXiv preprint arXiv: 1409.1556.
    21. 21)
      • 21. Martinez, A.M.: ‘The AR face database’. CVC Technical Report 24, 1998.
    22. 22)
      • 22. ‘Feret data’. Available at http://www.itl.nist.gov/iad/humanid/feret/feret-master.html.
    23. 23)
      • 23. ‘The database of faces’. Available at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
    24. 24)
      • 24. Naseem, I., Togneri, R., Bennamoun, M.: ‘Linear regression for face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (11), pp. 21062112.
    25. 25)
      • 25. Kabeer, V., Thasleema, T.M., Narayanan, N.K.: ‘Face recognition using state space parameters and artificial neural network classifier’. IEEE Int. Conf. on Innovations in Information Technology, Dubai, UAE, November 2007, pp. 476480.
    26. 26)
      • 26. Xu, Y., Zhang, D., Yang, J., et al: ‘A two-phase test sample sparse representation method for use with face recognition’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (9), pp. 12551262.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8304
Loading

Related content

content/journals/10.1049/joe.2018.8304
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address