http://iet.metastore.ingenta.com
1887

access icon openaccess Invert-U-Net DNN segmentation model for MRI cardiac left ventricle segmentation

  • PDF
    2.0304412841796875MB
  • XML
    50.388671875Kb
  • HTML
    50.615234375Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8302.html;jsessionid=7rjon41nutsl5.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8302&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Mozaffarian, D., Benjamin, E.J., Go, A.S., et al: ‘Heart disease and stroke statistics-2016 update: a report from the American Heart Association’, Circulation, 2016, 133, (4), pp. e38e360.
    2. 2)
      • 2. Tee, M., Noble, J.A., Bluemke, D.A.: ‘Imaging techniques for cardiac strain and deformation: comparison of echocardiography, cardiac magnetic resonance and cardiac computed tomography’, Expert Rev. Cardiovasc. Ther., 2013, 11, (2), pp. 221231.
    3. 3)
      • 3. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. 2015 IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA, June 2015, pp. 34313440.
    4. 4)
      • 4. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: ‘A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI’, Med. Image Anal., 2016, 30, pp. 108119.
    5. 5)
      • 5. Tran, P.V.: ‘A fully convolutional neural network for cardiac segmentation in short-axis MRI’, arXiv preprint arXiv:1604.00494, 2016.
    6. 6)
      • 6. Ronneberger, O., Fischer, P., Brox, T.: ‘U-net: convolutional networks for biomedical image segmentation’. Int. Conf. Medical image computing and computer-assisted intervention, Springer, Cham, 2015, pp. 234241.
    7. 7)
      • 7. Wolterink, J.M., Leiner, T., Viergever, M.A., et al: ‘Automatic segmentation and disease classification using cardiac cine MR images’, arXiv preprint arXiv:1708.01141, 2017.
    8. 8)
      • 8. Isensee, F., Jaeger, P., Full, P.M., et al: ‘Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features’, arXiv preprint arXiv:1707.00587, 2017.
    9. 9)
      • 9. Baumgartner, C.F., Koch, L.M., Pollefeys, M., et al: ‘An exploration of 2D and 3D.D.eep learning techniques for cardiac MR image segmentation’, arXiv preprint arXiv:1709.04496, 2017.
    10. 10)
      • 10. Tan, L.K., Liew, Y.M., Lim, E., et al: ‘Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences’, Med. Image Anal., 2017, 39, pp. 7886.
    11. 11)
      • 11. Radau, P., Li, Y., Connelly, K., et al: ‘Evaluation framework for algorithms segmenting short axis cardiac MRI’, The MIDAS Journal – Cardiac MR Left Ventricle Segmentation Challenge, 2009, 49.
    12. 12)
      • 12. Petitjean, C., Dacher, J.N.: ‘A review of segmentation methods in short axis cardiac MR images’, Med. Image Anal., 2011, 15, (2), pp. 169184.
    13. 13)
      • 13. Ngo, T.A., Lu, Z., Carneiro, G.: ‘Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance’, Med. Image Anal., 2017, 35, pp. 159171.
    14. 14)
      • 14. LV SEGMENTATION CHALLENGE’. Available at https://smial.sri.utoronto.ca/LV_Challenge/Evaluation.html, accessed 16 March 2018.
    15. 15)
      • 15. Lu, Y., Radau, P., Connelly, K., et al: ‘Automatic image-driven segmentation of left ventricle in cardiac cine MRI’, The MIDAS J., 2009, 49, p. 2.
    16. 16)
      • 16. Poudel, R.P.K., Lamata, P., Montana, G.: ‘Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentationReconstruction, Segmentation, and Analysis of Medical Images. (Springer, Cham, 2016), pp. 8394.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8302
Loading

Related content

content/journals/10.1049/joe.2018.8302
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address