http://iet.metastore.ingenta.com
1887

access icon openaccess Three-way recommendation integrating global and local information

  • XML
    87.369140625Kb
  • PDF
    930.0380859375Kb
  • HTML
    101.9013671875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8300.html;jsessionid=5a2mccsin9pfo.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8300&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Salakhutdinov, R., Mnih, A.: ‘Probabilistic matrix factorization’. Proc. of the 20th Int. Conf. on Neural Information Processing Systems, Vancouver, Canada, 2008, pp. 12571264.
    2. 2)
      • 2. Salakhutdinov, R., Mnih, A.: ‘Bayesian probabilistic matrix factorization using Markov chain Monte Carlo’. Proc. of the 25th Int. Conf. on Machine Learning, 2008, pp. 880887.
    3. 3)
      • 3. Yang, W.F., Wang, M., Chen, Z.: ‘Fast probabilistic matrix factorization for recommender system’. Int. Conf. on Mechatronics and Automation (ICMA), 2014, pp. 18891894.
    4. 4)
      • 4. Ma, C.C.: ‘A guide to singular value decomposition for collaborative filtering’. Computer, Long Beach, CA, 2008, pp. 114.
    5. 5)
      • 5. Sarwar, B., Karypis, G., Konstan, J., et al: ‘Incremental singular value decomposition algorithms for highly scalable recommender systems’. Int. Conf. on Computer and Information Science, 2002, pp. 2728.
    6. 6)
      • 6. Lee, D.D., Seung, H.S.: ‘Learning the parts of objects by non-negative matrix factorization’, Nature, 1999, 401, (6755), pp. 788791.
    7. 7)
      • 7. Li, T., Wang, J., Chen, H., et al: ‘A NMF-based collaborative filtering recommendation algorithm’. The Sixth World Congress on Intelligent Control and Automation, 2006, vol. 2, pp. 60826086.
    8. 8)
      • 8. Huang, J., Wang, J., Yao, Y., et al: ‘Cost-sensitive three-way recommendations by learning pair-wise preferences’, Int. J. Approx. Reason., 2017, 86, pp. 2840.
    9. 9)
      • 9. Zhang, H.R., Min, F.: ‘Three-way recommender systems based on random forests’, Knowl.-Based Syst., 2016, 91, pp. 275286.
    10. 10)
      • 10. Zhang, H.R., Min, F., Shi, B.: ‘Regression-based three-way recommendation’, Inf. Sci., 2017, 378, (1), pp. 444461.
    11. 11)
      • 11. Yao, Y.: ‘Three-way decisions with probabilistic rough sets’, Inf. Sci., 2010, 180, (3), pp. 341353.
    12. 12)
      • 12. Yao, Y.: ‘The superiority of three-way decisions in probabilistic rough set models’, Inf. Sci., 2011, 181, (6), pp. 10801096.
    13. 13)
      • 13. Min, F., He, H., Qian, Y., et al: ‘Test-cost-sensitive attribute reduction’, Inf. Sci., 2011, 181, (22), pp. 49284942.
    14. 14)
      • 14. Hartigan, J.A., Wong, M.A.: ‘Algorithm AS 136: A k-means clustering algorithm’, J. Roy. Stat. Soc., 1979, 28, (1), pp. 100108.
    15. 15)
      • 15. Joyce, J.M.: ‘Kullback-Leibler divergence’, in Miodrag, L. (Ed.): ‘International encyclopedia of statistical science’ (Springer, Berlin Heidelberg, 2011), pp. 720722.
    16. 16)
      • 16. Smola, A.J., Schölkopf, B.: ‘Sparse greedy matrix approximation for machine learning’. Int. Conf. on Machine Learning, 2000, pp. 911918.
    17. 17)
      • 17. Yao, Y.: ‘Three-way decision: an interpretation of rules in rough set theory’. Int. Conf. on Rough Sets and Knowledge Technology, 2009, pp. 642649.
    18. 18)
      • 18. Billsus, D., Pazzani, M.J.: ‘Learning collaborative information filters’. AAAI Tech. Report, 1998, vol. 98, pp. 4654.
    19. 19)
      • 19. Srebro, N., Jaakkola, T.: ‘Weighted low-rank approximations’. Proc. of the 20th Int. Conf. on Machine Learning (ICML-03), 2003, pp. 720727.
    20. 20)
      • 20. Lee, J., Kim, S., Lebanon, G., et al: ‘Local low-rank matrix approximation’. Int. Conf. on Machine Learning, 2013, pp. 8290.
    21. 21)
      • 21. Furnas, G.W., Deerwester, S., Dumais, S.T., et al: ‘Information retrieval using a singular value decomposition model of latent semantic structure’. Proc. of the 11th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, 1988, vol. 51, (2), pp. 465480.
    22. 22)
      • 22. Ma, H., Yang, H., King, I., et al: ‘Semi-nonnegative matrix factorization with global statistical consistency for collaborative filtering’. Proc. of the 18th ACM Conf. on Information and Knowledge Management, 2009, pp. 767776.
    23. 23)
      • 23. Liu, X.Y., Zhou, Z.H.: ‘The influence of class imbalance on cost-sensitive learning: An empirical study’. Sixth Int. Conf. on IEEE, 2006, pp. 970974.
    24. 24)
      • 24. Yang, X., Yao, J.: ‘Modelling multi-agent three-way decisions with decision-theoretic rough sets’, Fundam. Inform., 2012, 115, (2–3), pp. 157171.
    25. 25)
      • 25. Li, H., Zhang, L., Huang, B., et al: ‘Sequential three-way decision and granulation for cost-sensitive face recognition’, Knowl.-Based Syst., 2016, 91, pp. 241251.
    26. 26)
      • 26. Li, H., Zhou, X., Huang, B., et al: ‘Cost-sensitive three-way decision: a sequential strategy’. Int. Conf. on Rough Sets and Knowledge Technology, 2013, pp. 325337.
    27. 27)
      • 27. Schaffer, J.D., Lee, K.P., Gutta, S.: ‘Three-way media recommendation method and system’. U.S. Patent 7,937,725, May 2011.
    28. 28)
      • 28. Liu, D., Li, T., Liang, D.: ‘Three-way government decision analysis with decision-theoretic rough sets’, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 2012, 20, (supp01), pp. 119132.
    29. 29)
      • 29. Bertsekas, D.P.: ‘Constrained optimization and Lagrange multiplier methods’ (Academic Press, New York, 2014, 1st edn.).
    30. 30)
      • 30. Chu, D., Mehrmann, V., Nichols, N.K.: ‘Minimum norm regularization of descriptor systems by mixed output feedback’, Linear Algebr. Appl., 1999, 296, (1–3), pp. 3977.
    31. 31)
      • 31. Pong, T.K., Tseng, P., Ji, S., et al: ‘Trace norm regularization: reformulations, algorithms, and multi-task learning’, SIAM J. Optim., 2010, 20, (6), pp. 34653489.
    32. 32)
      • 32. Willmott, C.J., Matsuura, K.: ‘Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance’, Clim. Res., 2005, 30, (1), pp. 7982.
    33. 33)
      • 33. Fenton, N., Neil, M.: ‘Risk assessment and decision analysis with Bayesian networks’ (CRC Press, Boca Raton, 2012, 1st edn.).
    34. 34)
      • 34. Ji, S., Carin, L.: ‘Cost-sensitive feature acquisition and classification’, Pattern Recognit., 2007, 40, (5), pp. 14741485.
    35. 35)
      • 35. Harper, F.M., Konstan, J.A.: ‘The MovieLens datasets: history and context’, ACM Trans. Inter. Intell. Syst. (TIIS), 2016, 5, (4), pp. 120.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8300
Loading

Related content

content/journals/10.1049/joe.2018.8300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address