http://iet.metastore.ingenta.com
1887

access icon openaccess Model compression of SDM-based face alignment for mobile applications

  • XML
    74.3779296875Kb
  • HTML
    81.2138671875Kb
  • PDF
    3.743353843688965MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8294.html;jsessionid=20j81flpka4sq.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8294&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kazemi, V., Josephine, S.: ‘One millisecond face alignment with an ensemble of regression trees’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, USA, June 2014.
    2. 2)
      • 2. Xiong, X., De la Torre, F.: ‘Supervised descent method and its applications to face alignment’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Portland, USA, June 2013, pp. 532539.
    3. 3)
      • 3. Jin, X., Tan, X.: ‘Face alignment in-the-wild: a survey’, Comput. Vis. Image Underst., 2017, 162, pp. 122.
    4. 4)
      • 4. Cootes, T., Edwards, G., Taylor, C.: ‘Active appearance models’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 681685.
    5. 5)
      • 5. Cootes, T., Taylor, C., Cooper, D., et al: ‘Active shape models-their training and application’, Comput. Vis. Image Underst., 1995, 61, (1), pp. 3859.
    6. 6)
      • 6. Tzimiropoulos, G., Panitic, M.: ‘Gauss-newton deformable part models for face alignment in-the-wild’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Columbus, USA, June 2014, pp. 18511858.
    7. 7)
      • 7. Cristinacce, D., Cootes, T.: ‘Feature detection and tracking with constrained local models’. Proc. British Machine Vision Conf., Edinburgh, UK, September, 2006, pp. 929938.
    8. 8)
      • 8. Yang, W., Sun, X., Deng, W., et al: ‘Fourier locally linear soft constrained MACE for facial landmark localization’, CAAI Trans. Intell. Technol., 2016, 1, (3), pp. 241248.
    9. 9)
      • 9. Cao, X., Wei, Y., Wen, F., et al: ‘Face alignment by explicit shape regression’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, June 2012, pp. 28872894.
    10. 10)
      • 10. Burgos-Artizzu, X.P., Perona, P., Dollar, P.: ‘Robust face landmark estimation under occlusion’. Proc. Int. Conf. Computer Vision, Sydney, Australia, December 2013, pp. 15151520.
    11. 11)
      • 11. Xiong, X., De la Torre, F.: ‘Global supervised descent method’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, USA, June 2015, pp. 26642673.
    12. 12)
      • 12. Sun, Y., Wang, X., Tang, X.: ‘Deep convolutional network cascade for facial point detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Portland, USA, June 2013, pp. 34763483.
    13. 13)
      • 13. Trigeorgis, G., Snape, P., Nicolaou, M.A., et al: ‘Mnemonic descent method: a recurrent process applied for end-to-end face alignment’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016.
    14. 14)
      • 14. Jourabloo, A., Liu, X.: ‘Large-pose face alignment via CNN-based dense 3d model fitting’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016.
    15. 15)
      • 15. Zhu, X., Lei, Z., Liu, X., et al: ‘Face alignment across large poses: a 3d solution’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016.
    16. 16)
      • 16. Bulat, A., Tzimiropoulos, G.: ‘How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230000 3D facial landmarks)’. Proc. Int. Conf. Computer Vision, Venice, Italy, October 2017, pp. 10211030.
    17. 17)
      • 17. Iandola, F., Han, S., Moskewicz, M., et al: ‘Squeezenet: Alexnet-level accuracy with 50X fewer parameters and <0.5MB model size’, CoRR, February 2016.
    18. 18)
      • 18. Li, H., Kadav, A., Durdanovic, I., et al: ‘Pruning filters for efficient convnets’. Proc. Int. Conf. Learning Representations, Toulon, France, April 2017.
    19. 19)
      • 19. Rastegari, M., Ordonez, V., Redmon, J., et al: ‘XNOR-Net: ImageNet classification using binary convolutional neural networks’. Proc. Eur. Conf. Computer Vision, Amsterdam, The Netherlands, October 2016, pp. 525542.
    20. 20)
      • 20. Courbariaux, M., Hubara, I., Soudry, D., et al: ‘Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or −1’, CoRR, February 2016.
    21. 21)
      • 21. Lowe, D.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    22. 22)
      • 22. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, USA, June 2005, pp. 886893.
    23. 23)
      • 23. Yan, J., Lei, Z., Yi, D., et al: ‘Learn to combine multiple hypotheses for accurate face alignment’. Proc. Int. Conf. Computer Vision Workshops on 300-W Challenge, Sydney, Australia, December 2013.
    24. 24)
      • 24. Duda, R.O., Hart, P.E., Stork, D.G.: ‘Pattern classification’ (Wiley-Interscience Press, Hoboken, 2000, 2nd edn.).
    25. 25)
      • 25. Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., et al: ‘A semi-automatic methodology for facial landmark annotation’. Proc. IEEE Conf. Computer Vision and Pattern Recognition Workshops, Portland, USA, June 2013, pp. 896903.
    26. 26)
      • 26. Superviseddescent’, Available at: https://github.com/patrikhuber/superviseddescent, accessed 28 April 2018.
    27. 27)
      • 27. 300VW dataset’, Available at: https://ibug.doc.ic.ac.uk/resources/300-VW/, accessed 27 July 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8294
Loading

Related content

content/journals/10.1049/joe.2018.8294
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address