http://iet.metastore.ingenta.com
1887

access icon openaccess Method for improving zero-shot image classification

  • XML
    55.9423828125Kb
  • PDF
    2.337259292602539MB
  • HTML
    78.333984375Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8292.html;jsessionid=1irb6oeneqm04.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8292&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Demisse, G. G., Aouada, D., Ottersten, B.: ‘Similarity metric for curved shapes in Euclidean space’, 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, June 2016, pp. 50425050.
    2. 2)
      • 2. Lampert, C. H., Nickisch, H., Harmeling, S.: ‘Attribute-based classification for zero-shot visual object categorization’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (3), pp. 453465.
    3. 3)
      • 3. Zhang, L., Xiang, T., Gong, S.: ‘Learning a deep embedding model for zero-shot learning’, 2016, arXiv preprint arXiv: 1611.05088.
    4. 4)
      • 4. Li, Y., Wang, D., Hu, H., et al: ‘Zero-shot recognition using dual visual-semantic mapping paths’, 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, July 2017, pp. 52075215.
    5. 5)
      • 5. Kodirov, E., Xiang, T., Gong, S.: ‘Semantic autoencoder for zero-shot learning’, arXiv preprint arXiv:1704.08345, 2017.
    6. 6)
      • 6. Seo, J. H., Kwon, D. S.: ‘Learning similarity metric for comparing RGB-D image patches by CNN’. IEEE Int. Conf. on Ubiquitous Robots and Ambient Intelligence, 2017, pp. 490491.
    7. 7)
      • 7. Ciobanu, A., Barbu, T., Niţă, C.: ‘Novel image similarity metric for evaluating denoising and restoration techniques’. IEEE E-Health and Bioengineering Conf., 2017, pp. 470473.
    8. 8)
      • 8. Yan, Z., Yang, X., Cheng, K. T. T.: ‘A skeletal similarity metric for quality evaluation of retinal vessel segmentation’, IEEE Trans. Med. Imaging, 2018, PP, (99), pp. 11.
    9. 9)
      • 9. Chen, G., Kong, Q., Mao, W.: ‘Online event detection and tracking in social media based on neural similarity metric learning’. IEEE Int. Conf. on Intelligence and Security Informatics, 2017, pp. 182184.
    10. 10)
      • 10. Cai, X., Wang, C., Xiao, B., et al: ‘Deep nonlinear metric learning with independent subspace analysis for face verification’. ACM Int. Conf. on Multimedia, 2012, pp. 749752.
    11. 11)
      • 11. Hu, J., Lu, J., Tan, Y. P.: ‘Deep transfer metric learning’, IEEE Trans. Image Process., 2016, 25, (12), pp. 55765588.
    12. 12)
      • 12. Xian, Y., Lampert, C.H., Schiele, B., et al: ‘Zero-shot learning – a comprehensive evaluation of the good, the bad and the ugly’, 2017.
    13. 13)
      • 13. Han, H., Jain, A.K., Shan, S., et al: ‘Heterogeneous face attribute estimation: a deep multi-task learning approach’, IEEE Trans. Pattern Anal. Mach. Intell., Early Access2017, p. 1.
    14. 14)
      • 14. Van Der Maaten, L.: ‘Accelerating t-SNE using tree-based algorithms’, J. Mach. Learn. Res., 2014, 15, (1), pp. 32213245.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8292
Loading

Related content

content/journals/10.1049/joe.2018.8292
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address