http://iet.metastore.ingenta.com
1887

access icon openaccess Smartphone-based speed acquisition and differential evolution modelling for fitness running

  • XML
    110.2802734375Kb
  • PDF
    1.3671655654907227MB
  • HTML
    119.01171875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8291.html;jsessionid=do5vxu9opomi.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8291&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Yan, Q.: ‘Effect of different intensity and duration of aerobic fitness exercise on body fat’, J. Wuhan Inst. Phys. Educ., 2013, 47, (10), pp. 5458.
    2. 2)
      • 2. Allman, K.: ‘Five fitness apps worth the download’, LSJ IET Commun., 2017, (31), p. 57.
    3. 3)
      • 3. Renaudin, V., Susi, M., Lachapelle, G.: ‘Step length estimation using handheld inertial sensors’, Sensors, 2012, 12, (7), pp. 85078525.
    4. 4)
      • 4. Ho, N.H., Truong, P.H., Jeong, G.M.: ‘Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone’, Sensors, 2016, 16, (9), p. 1423.
    5. 5)
      • 5. Li, F., Zhao, C., Ding, G.: ‘A reliable and accurate indoor localization method using phone inertial sensors’. Proc. 2012 ACM Conf. on Ubiquitous Computing, Pittsburgh, PA, USA, 2012, pp. 421430.
    6. 6)
      • 6. Xie, Y.T., Bian, N.Z.: ‘Research and application of physical activity consumption detection on android smart phone’, Comput. Appl. Softw., 2012, 29, (10), pp. 227229.
    7. 7)
      • 7. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: ‘Activity recognition using cell phone accelerometers’, ACM Sigkdd Explorations Newsl., 2011, 12, (2), pp. 7482.
    8. 8)
      • 8. Bai, Y.W., Yu, C.H., Wu, S.C.: ‘Using a three-axis accelerometer and GPS module in a smart phone to measure walking steps and distance’. 2014 IEEE 27th Canadian Conf. on Electrical and Computer Engineering (CCECE), Toronto, ON, Canada, 2014, pp. 16.
    9. 9)
      • 9. Ma, S.Y.: ‘The design and implementation of a pedometer application based on IOS platformSoftware, 2013, 33, (12), pp. 6668.
    10. 10)
      • 10. Fasel, B., Duc, C., Dadashi, F.: ‘A wrist sensor and algorithm to determine instantaneous walking cadence and speed in daily life walking’, Med. Biol. Eng. Comput., 2017, 55, pp. 17731785.
    11. 11)
      • 11. Neville, J.G., Rowlnds, D.D., Lee, J.B.: ‘A model for comparing over-ground running speed and accelerometer derived step rate in elite level athletes’, IEEE Sens. J., 2016, 16, (1), pp. 185191.
    12. 12)
      • 12. Zhao, Y., Xu, G.H., Yang, C.: ‘Estimation of speed based on fuzzy-Kalman filter’, Instrum. Tech. Sens., 2013, 41, (12), pp. 8083.
    13. 13)
      • 13. Kranz, M., Möller, A., Hammerla, N.: ‘The mobile fitness coach: towards individualized skill assessment using personalized mobile devices’, Pervasive Mob. Comput., 2013, 9, (2), pp. 203215.
    14. 14)
      • 14. Zhou, P., Tian, L.: ‘The research about effect of aerobic fitness running on body intention’, Sports, 2016, (21), pp. 5354.
    15. 15)
      • 15. Sornanathan, L., Khalil, I.: ‘Fitness monitoring system based on heart rate and SpO2 level’. 2010 10th IEEE Int. Conf. on Information Technology and Applications in Biomedicine (ITAB), Kuantan, Pahang, Malaysia, 2010, pp. 15.
    16. 16)
      • 16. Fudge, B.W., Wilson, J., Easton, C.: ‘Estimation of oxygen uptake during fast running using accelerometry and heart rate’, Med. Sci. Sports Exercise, 2007, 39, (1), pp. 192198.
    17. 17)
      • 17. Sun, B., Liu, Y., Zhuang, T.: ‘The experimental research on modeling of walking energy expenditure based on the waist accelerometer’, China Sport Sci., 2013, 33, (4), pp. 3641.
    18. 18)
      • 18. Garcia-Garcia, F., García-Sáez, G., Chausa, P.: ‘Statistical machine learning for automatic assessment of physical activity intensity using multi-axial accelerometry and heart rate’. 13th Conf. on Artificial Intelligence in Medicine, Bled, Slovenia, 2011, vol. 6747, pp. 7079.
    19. 19)
      • 19. Cheng, T.M., Savkin, A.V., Celler, B.G.: ‘Nonlinear modeling and control of human heart rate response during exercise with various work load intensities’, IEEE Trans. Biomed. Eng., 2008, 55, (11), pp. 24992508.
    20. 20)
      • 20. Scalzi, S., Tomei, P., Verrelli, C.M.: ‘Nonlinear control techniques for the heart rate regulation in treadmill exercises’, IEEE Trans. Biomed. Eng., 2012, 59, (3), pp. 599603.
    21. 21)
      • 21. Brzostowski, K., Drapała, J., Grzech, A.: ‘Adaptive decision support system for automatic physical effort plan generation–data-driven approach’, Cybern. Syst., 2013, 44, (2/3), pp. 204221.
    22. 22)
      • 22. Fujiki, Y., Tsiamyrtzis, P., Pavlidis, I.: ‘Making sense of accelerometer measurements in pervasive physical activity applications’. CHI'09 Extended Abstracts on Human Factors in Computing Systems, Boston, MA, 2009, pp. 34253430.
    23. 23)
      • 23. Kuo, Y.S., Pannuto, P., Hslao, K.J.: ‘Luxapose: indoor positioning with mobile phones and visible light’. Proc. 20th Annual Int. Conf. on Mobile Computing and Networking, Maui, Hawaii, USA, 2014, pp. 447458.
    24. 24)
      • 24. Sun, H., Mcintosh, S.: ‘Phone call detection based on smartphone sensor data’, Cloud Computing and Security: Second Int. Conf. (ICCCS 2016), Nanjing, China, July 2016, pp. 284295.
    25. 25)
      • 25. Shi, D., Wang, R., Wu, Y.: ‘A novel orientation-and location-independent activity recognition method’, Pers. Ubiquitous Comput., 2017, 21, (3), pp. 115.
    26. 26)
      • 26. Wang, Z., Zhang, D.: ‘Progressive switching median filter for the removal of impulse noise from highly corrupted images’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 1999, 46, (1), pp. 7880.
    27. 27)
      • 27. Forsythe, G.E., Moler, C.B., Malcolm, M.A.: ‘Computer methods for mathematical computations’ (Prentice-Hall, Upper Saddle River, 1977).
    28. 28)
      • 28. Mendes, R., Mohais, A.S.: ‘DynDE: A differential evolution for dynamic optimization problems’. 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, September 2005, pp. 28082815.
    29. 29)
      • 29. Goulden, K.J.: ‘Effect sizes for research: a broad practical approach’, J. Dev. Behav. Pediatrics, 2006, 27, (5), pp. 419420.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8291
Loading

Related content

content/journals/10.1049/joe.2018.8291
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address