http://iet.metastore.ingenta.com
1887

access icon openaccess Hysteretic chaotic neural network for crossbar switch problems

  • HTML
    85.5634765625Kb
  • XML
    59.775390625Kb
  • PDF
    1.427236557006836MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8288.html;jsessionid=68r54ubcrskjm.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8288&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Smith, K.A.: ‘Neural networks for combinatorial optimization: are view of more than a decade of research’, INFORMS J. Comput., 1999, 11, pp. 1534.
    2. 2)
      • 2. Tank, D.W., Hopfield, J.J.: ‘Simple neural optimization network: an A/D converter, signal decision circuit, and linear programming circuit’, IEEE Trans. Circuits Syst., 1986, 33, (5), pp. 533541.
    3. 3)
      • 3. Aihara, K., Takabe, T., Toyoda, M.: ‘Chaotic neural networks’, Phys. Lett. A, 2009, 144, (6), pp. 333340.
    4. 4)
      • 4. Chen, L., Aihara, K.: ‘Chaotic simulated annealing by a neural network model with transient chaos’, Neural Netw., 1995, 8, (6), pp. 915930.
    5. 5)
      • 5. Cavalieri, S., Russo, M.: ‘Improving Hopfield neural network performance by fuzzy logic-based coefficient tuning’, Neurocomputing, 1998, 18, (1–3), pp. 107126.
    6. 6)
      • 6. Yu, W., Cao, J.D.: ‘Cryptography based on delayed chaotic neural networks’, Phys. Lett. A, 2006, 356, (4–5), pp. 333338.
    7. 7)
      • 7. Danca, M.-F., et al: ‘Hidden chaotic sets in a Hopfield neural system’, Chaos Solitons Fractals, 2017, 103, pp. 144150.
    8. 8)
      • 8. Hopfield, J.J.: ‘Neural network and physical systems with emergent collective computational abilities’, Proc. Natl. Acad. Sci. USA, 1982, 79, pp. 25542558.
    9. 9)
      • 9. Hopfield, J.J., Tank, D.W.: ‘Neural’ computation of decisions in optimization problems’, Biol. Cybern., 1985, 52, pp. 141152.
    10. 10)
      • 10. Xia, G., Tang, Z., Li, Y., et al: ‘A binary Hopfield neural network with hysteresis for large crossbar packet switches’, Neurocomputing, 2005, 67, pp. 417425.
    11. 11)
      • 11. Gang, Y., Junyan, Y., et al: ‘A TCNN filter algorithm to maximum clique problem’, Neurocomputing, 2009, 72, (4–6), pp. 13121318.
    12. 12)
      • 12. Liu, X., Xiu, C.: ‘A novel hysteretic chaotic neural network and its applications’, Neurocomputing, 2007, 70, (13–15), pp. 25612565.
    13. 13)
      • 13. Li, Y., Tang, Z., Wang, R., et al: ‘A positively self-feedbacked Hopfield neural network for N-queens problem’, IEEE Trans. Circuits Syst., 2004, 3173, pp. 442447.
    14. 14)
      • 14. Marrakchi, A., Troudet, T.: ‘A neural net arbitrator for large crossbar packet-switches’, IEEE Trans. Circuits Syst., 1989, 36, (7), pp. 10391041.
    15. 15)
      • 15. Troudet, T.P., Walterst, S.M.: ‘Neural network architecture for crossbar switch control’, IEEE Trans. Circuits Syst., 1991, 38, (1), pp. 4256.
    16. 16)
      • 16. Xu, X.S., Tang, Z., Wang, J.H.: ‘A method to improve the transiently chaotic neural network’, Neurocomputing, 2005, 67, pp. 456463.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8288
Loading

Related content

content/journals/10.1049/joe.2018.8288
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address