http://iet.metastore.ingenta.com
1887

access icon openaccess Text clustering algorithm based on deep representation learning

  • XML
    131.91796875Kb
  • PDF
    1.7674055099487305MB
  • HTML
    155.8837890625Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8282.html;jsessionid=1wl097b2w2x8w.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8282&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Aggarwal, C.C., Zhai, C.X.: ‘A survey of text clustering algorithms’, in Aggarwal, C.C., Zhai, C. (Eds.): ‘Mining Text Data’ (Springer, US, 2012), pp. 77128.
    2. 2)
      • 2. Yin, J., Wang, J.: ‘A text clustering algorithm using an online clustering scheme for initialization’. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, San Francisco, USA, August 2016, pp. 19952004.
    3. 3)
      • 3. Dhillon, I.S., Modha, D.S.: ‘Concept decompositions for large sparse text data using clustering’, Mach. Learn., 2001, 42, (1), pp. 143175.
    4. 4)
      • 4. Xu, J., Wang, P., Tian, G., et al: ‘Short text clustering via convolutional neural networks’. The Workshop on Vector Space Modeling for Natural Language Processing, Denver, USA, June 2015, pp. 6269.
    5. 5)
      • 5. Xu, J., Xu, B., Wang, P., et al: ‘Self-taught convolutional neural networks for short text clustering’, Neural Netw., 2017, 88, pp. 2231.
    6. 6)
      • 6. Wang, Z., Mi, H., Ittycheriah, A.: ‘Semi-supervised clustering for short text via deep representation learning’. Signll Conf. on Computational Natural Language Learning, Berlin, Germany, August 2016, pp. 3139.
    7. 7)
      • 7. Legrand, J., Collobert, R.: ‘Joint RNN-based greedy parsing and word composition’, Comput. Sci., 2015, pp. 5161.
    8. 8)
      • 8. Kim, Y.: ‘Convolutional neural networks for sentence classification’. Eprint Arxiv, 2014.
    9. 9)
      • 9. Hochreiter, S., Schmidhuber, J.: ‘Long short-term memory’, Neural Comput., 1997, 9, (8), pp. 17351780.
    10. 10)
      • 10. Mikolov, T., Chen, K., Corrado, G., et al: ‘Efficient estimation of word representations in vector space’, Comput. Sci., 2013.
    11. 11)
      • 11. Ganin, Y., Ustinova, E., Ajakan, H., et al: ‘Domain-adversarial training of neural networks’, J. Mach. Learn. Res., 2016, 17, (1), pp. 20012035.
    12. 12)
      • 12. Bishop, C.M.: ‘Pattern recognition and machine learning’, IEEE Trans. Inf. Theory, 2012, 9, (4), pp. 257261.
    13. 13)
      • 13. Binyu, W., Wenfen, L., Xuexian, H., et al: ‘Research on text clustering for selecting initial cluster center based on cosine distance’, Comp. Eng. Appl., 2018, 54, (10), pp. 1118.
    14. 14)
      • 14. Kingma, D., Adam, B.J.: ‘A method for stochastic optimization’, Comput. Sci., 2014.
    15. 15)
      • 15. Xue, G.R., Dai, W., Yang, Q., et al: ‘Topic-bridged PLSA for cross-domain text classification’. Int. ACM SIGIR Conf. on Research & Development in Information Retrieval (DBLP), Singapore, July 2008, pp. 627634.
    16. 16)
      • 16. Greff, K., Srivastava, R.K., Koutník, J., et al: ‘LSTM: a search space odyssey’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (10), pp. 22222232.
    17. 17)
      • 17. Srivastava, N., Hinton, G., Krizhevsky, A., et al: ‘Dropout: a simple way to prevent neural networks from overfitting’, J. Mach. Learn. Res., 2014, 15, (1), pp. 19291958.
    18. 18)
      • 18. Raskutti, G., Wainwright, M.J., Yu, B.: ‘Early stopping and non-parametric regression: an optimal data-dependent stopping rule’, J. Mach. Learn. Res., 2014, 15, (1), pp. 335366.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8282
Loading

Related content

content/journals/10.1049/joe.2018.8282
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address