http://iet.metastore.ingenta.com
1887

access icon openaccess New microscopic image sequence-driven cell deformation model

  • XML
    57.3203125Kb
  • PDF
    1.001485824584961MB
  • HTML
    72.783203125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8281.html;jsessionid=16td767o8u1he.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8281&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Pretorius, A.J., Khan, I.A., Errington, R.J.: ‘A survey of visualization for live cell imaging’, Comput. Graph. Forum, 2017, 36, pp. 4663.
    2. 2)
      • 2. Mohan, K., Luo, T., Robinson, D.N., et al: ‘Computational model for cell shape regulation through mechanosensing and mechanical feedback’, Biophys. J., 2014, 106, pp. 378a378a.
    3. 3)
      • 3. Ghosh, N.: ‘Video bioinformatics methods for analyzing cell dynamics: a survey. Video bioinformatics’ (Springer International Publishing, Basel, 2015).
    4. 4)
      • 4. Paluch, E., Heisenberg, C.P.: ‘Biology and physics of cell shape changes in development’, Curr. Biol., 2009, 19, (1), pp. 790799.
    5. 5)
      • 5. Keren, K., Pincus, Z., Allen, G.M., et al: ‘Mechanism of shape determination in motile cells’, Nature, 2008, 453, (719), p. 475.
    6. 6)
      • 6. Mogilner, A., Keren, K.: ‘The shape of motile cells’, Curr. Biol., 2009, 19, (1), p. R762.
    7. 7)
      • 7. Jakob, B., Splinter, J., Durante, M., et al: ‘Live cell microscopy analysis of radiation-induced DNA double-strand break motion’, Proc. Natl Acad. Sci. USA, 2009, 106, (9), pp. 31723177.
    8. 8)
      • 8. Xiong, Y., Iglesias, P.A.: ‘Tools for analyzing cell shape changes during chemotaxis’, Integr. Biol. Quant. Biosci. Nano Macro, 2010, 2, (11-1), pp. 561567.
    9. 9)
      • 9. Feng, C. M., Liu, J. X., Gao, Y. L., et al: ‘A graph-Laplacian PCA based on L1/2-norm constraint for characteristic gene selection’. IEEE Int. Conf. on Bioinformatics and Biomedicine, Shenzen, China, December 2016, pp. 17951799.
    10. 10)
      • 10. Bouwmans, T., Zahzah, E. H.: ‘Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance’, Comput. Vis. Image Underst., 2014, 122, pp. 2234.
    11. 11)
      • 11. Last, C., Winkelbach, S., Wahl, F. M., et al: ‘A locally deformable statistical shape model’, in ‘International Workshop on Machine Learning in Medical Imaging’ (Springer, Berlin, 2011), pp. 5158.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8281
Loading

Related content

content/journals/10.1049/joe.2018.8281
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address