http://iet.metastore.ingenta.com
1887

access icon openaccess Convolutional neural network-based multi-label classification of PCB defects

  • XML
    75.259765625Kb
  • HTML
    76.7177734375Kb
  • PDF
    1.103297233581543MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8279.html;jsessionid=18ug3t1tae1go.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8279&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Wu, W.Y., Wang, M.J.J., Liu, C.M.: ‘Automated inspection of printed circuit boards through machine vision’, Comput. Ind., 1996, 28, (2), pp. 103111.
    2. 2)
      • 2. Tatibana, M.H., Lotufo, R.D.A.: ‘Novel automatic PCB inspection technique based on connectivity’. Proc. X Brazilian Symp. on Computer Graphics and Image Processing, Campos do Jordao, 1997, pp. 187194.
    3. 3)
      • 3. Chen, X.J., Liu, X.H.: ‘A novel algorithm for inspecting and classifying the defects of printed circuit boards’, J. Huazhong Univ. Sci. Technol. Med. Sci., 2010, 38, (7), pp. 7073.
    4. 4)
      • 4. Putera, S.H.I., Ibrahim, Z.: ‘Printed circuit board defect detection using mathematical morphology and MATLAB image processing tools’. Int. Conf. on Education Technology and Computer, Shanghai, 2010, pp. V5-359V5-363.
    5. 5)
      • 5. Putera, S.H.I., Dzafaruddin, S.F., Mohamad, M.: ‘MATLAB based defect detection and classification of printed circuit board’. Int. Conf. on Digital Information and Communication Technology and it's Applications (DICTAP), Bangkok, 2012, pp. 115119.
    6. 6)
      • 6. Chen, C.J., Lai, S.H., Lee, W.H., et al: ‘Hausdorff distance based PCB inspection system with defect classification’, Proc. SPIE, 2005, 6000, p. 600008.
    7. 7)
      • 7. Nakagawa, T., Iwahori, Y., Bhuyan, M.K.: ‘Defect classification of electronic board using multiple classifiers and grid search of SVM parameters (computer and information science)’ (Springer, Heidelberg, 2013), pp. 115127.
    8. 8)
      • 8. Chauhan, A.P.S., Bhardwaj, S.C.: ‘Detection of bare PCB defects by image subtraction method using machine vision’. Proc. World Congress on Engineering, 2011, vol. 2, pp. 68.
    9. 9)
      • 9. Ren, S., Lu, L., Zhao, L., et al: ‘Circuit board defect detection based on image processing’. Int. Congress on Image and Signal Processing (CISP), Shenyang, China, October 2016, pp. 899903.
    10. 10)
      • 10. Chaudhary, V., Dave, I.R., Upla, K.P.: ‘Automatic visual inspection of printed circuit board for defect detection and classification’. Int. Conf. on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, 2017, pp. 732737.
    11. 11)
      • 11. Xu, Y., Jia, Z., Ai, Y., et al: ‘Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation’. Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, 2015, pp. 947951.
    12. 12)
      • 12. Wagner, R., Thom, M., Schweige, R., et al: ‘Learning convolutional neural networks from few samples’. Int. Joint Conf. on Neural Networks (IJCNN), Dallas, TX, 2013, pp. 17.
    13. 13)
      • 13. Garcia, C., Delakis, M.: ‘A neural architecture for fast and robust face detection’. Object Recognition Supported by User Interaction for Service Robots, Quebec, Canada, December 2002, pp. 4447.
    14. 14)
      • 14. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Conf. Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 34313440.
    15. 15)
      • 15. Cireşan, D., Meier, U.: ‘Multi-Column deep neural networks for offline handwritten Chinese character classification’. Int. Joint Conf. on Neural Networks (IJCNN), Killarney, 2015, pp. 16.
    16. 16)
      • 16. Guo, M., Wang, R.: ‘The introduction of AOI in PCB defect detection based on linear array camera’. Int. Forum on Management, Education and Information Technology Application, Guangzhou, China, January 2016.
    17. 17)
      • 17. Guo, M., Wang, R.: ‘Research of the machine vision based PCB defect inspection system’. Int. Conf. on Intelligence Science and Information Engineering, Wuhan, 2011, pp. 472475.
    18. 18)
      • 18. z, L., Lin, Zhou L.S., Wan, J.D., et al: ‘Study of PCB automatic optical inspection system based on mathematical morphology’. Int. Conf. on Computer Technology and Development, Kota Kinabalu, 2009, pp. 405408.
    19. 19)
      • 19. Benedek, C.: ‘Detection of soldering defects in printed circuit boards with hierarchical marked point processes’, Pattern Recognit. Lett., 2011, 32, (13), pp. 15351543.
    20. 20)
      • 20. Lecun, Y., Bottou, L., Bengio, Y., et al: ‘Gradient-based learning applied to document recognition’, Proc. IEEE, 1998, 86, (11), pp. 22782324.
    21. 21)
      • 21. Fukushima, K., Miyake, S.N.: ‘A new algorithm for pattern recognition tolerant of deformations and shifts in position’, Pattern Recognit., 1982, 15, (6), pp. 455469.
    22. 22)
      • 22. Winter1516_lecture7’. Available at http://cs231n.stanford.edu/slides /2016/winter1516_lecture7.pdf, accessed 27 January 2016.
    23. 23)
      • 23. Nair, V., Hinton, G.E.: ‘Rectified linear units improve restricted boltzmann machines’. Int. Conf. on Machine Learning (ICML-10), Haifa, Israel, June 2010, pp. 807814.
    24. 24)
      • 24. Kinga, D., Adam, J.B.: ‘A method for stochastic optimization’. Int. Conf. on Learning Representations (ICLR), 2015.
    25. 25)
      • 25. Ma, J.: ‘Defect detection and recognition of bare PCB based on computer vision’. Chinese Control Conf. (CCC), Dalian, 2017, pp. 1102311028.
    26. 26)
      • 26. Bilinear_interpolation’. Available at https://en.wikipedia.org/wiki/Bilinear_interpolation, accessed 10 November 2017.
    27. 27)
      • 27. Raihan, F., Ce, W.: ‘PCB defect detection USING OPENCV with image subtraction method’. Int. Conf. on Information Management and Technology (ICIMTech), Yogyakarta, 2017, pp. 204209.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8279
Loading

Related content

content/journals/10.1049/joe.2018.8279
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address