http://iet.metastore.ingenta.com
1887

access icon openaccess Research on intelligent dispatching strategy of power grid using multi-agent and knowledge discovery algorithm

  • PDF
    2.4286251068115234MB
  • HTML
    80.1767578125Kb
  • XML
    78.3955078125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8276.html;jsessionid=211vsiehnv72v.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8276&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Viral, R., Khatod, D.K.: ‘Optimal planning of distributed generation systems in distribution system: a review’, Renew. Sustain. Energy Rev., 2012, 16, (7), pp. 51465165.
    2. 2)
      • 2. Liu, S., Wu, Z., Dou, X., et al: ‘Optimal configuration of hybrid solar-wind distributed generation capacity in a grid-connected microgrid’, Innovative Smart Grid Technologies, 2013, 44, (44), pp, 16.
    3. 3)
      • 3. Madruga, E.P., Bernardon, D.P., Viriea, R.P., et al: ‘Analysis of transient stability in distribution systems with distributed generation’, Electr. Power Energy Syst., 2018, 99, pp. 555565.
    4. 4)
      • 4. Elbasuony, G.S., Aleem, S.A., Ibrahim, A.M., et al: ‘A unified index for power quality evaluation in distributed generation systems’, Energy, 2018, 149, (15), pp. 607622.
    5. 5)
      • 5. Payasi, R.P., Singh, A.K., Singh, D.: ‘Review of distributed generation planning: objectives, constraints, and algorithms’, Int. J. Eng. Sci. Technol., 2011, 3, (3), pp. 133153.
    6. 6)
      • 6. Yan, J.H., Zhang, F.Y., Li, X., et al: ‘Modeling and multi-objective optimization for energy-aware hybrid flow shop scheduling’, 2014.
    7. 7)
      • 7. Wang, F., Zhou, L., Ren, H., et al: ‘Multi-objective optimization model of source-load-storage synergetic dispatch for a building energy management system based on TOU price demand response’, IEEE Trans. Ind. Appl., 2018, 54, (2), pp. 10171028.
    8. 8)
      • 8. Wang, J., Yang, W., Du, P., et al: ‘Research and application of a hybrid forecasting framework based on multi-objective optimization for electrical power system’, Energy, 2018, 148, (1), pp. 5978.
    9. 9)
      • 9. Li, W., Tan, X., Sun, B., et al: ‘Optimal power dispatch of a centralised electric vehicle battery charging station with renewables’, IET Commun., 2018, 12, (5), pp. 579585.
    10. 10)
      • 10. Liang, Z., Liang, X., Yan, O.U., et al: ‘Energy integrated scheduling based on multi-objective-constrained optimization evolutionary algorithm’, Comput. Integr. Manuf. Syst., 2016, 22, (11), pp, 26682678.
    11. 11)
      • 11. Cats, O., West, J., Eliasson, J.: ‘A dynamic stochastic model for evaluating congestion and crowding effects in transit systems’, Transp. Res. Part B Methodol., 2016, 89, pp. 4357.
    12. 12)
      • 12. Logenthiran, T., Srinivasan, D., Khambadkone, A.M.: ‘Multi-agent system for energy resource scheduling of integrated microgrids in a distributed system’, Electr. Power Syst. Res., 2011, 81, (1), pp. 138148.
    13. 13)
      • 13. Russo, L.S., Bernardino, H.S., Barbosa, J.C.: ‘Knowledge discovery in multi-objective optimization problems in engineering via genetic programming’, Expert Syst. Appl., 2018, 99, (1), pp. 92102.
    14. 14)
      • 14. Cabrera, F., Shin, R., Concha, D., et al: ‘Temporal knowledge discovery in big BAS data for building energy management’, Energy Build., 2015, 109, (4), pp. 7589.
    15. 15)
      • 15. Chen, C.H., Li, P.K., Chong, Y.T., et al: ‘Knowledge discovery using genetic algorithm for maritime situational awareness’, Int. J. Exp. Syst. Appl., 2014, 41, (6), pp. 27422753.
    16. 16)
      • 16. Li, Z., Liu, J.: ‘A multi-agent genetic algorithm for community detection in complex networks’, Phys. A Stat. Mech. Appl., 2016, 449, pp. 336347.
    17. 17)
      • 17. Spychalski, P., Arendt, R.: ‘Machine learning in multi-agent systems using associative arrays’, Parallel Comput., 2018, 75, pp. 8899.
    18. 18)
      • 18. Yan, J., Yu, H., Xia, X.: ‘Distributed optimization of multi-agent systems with delayed sampled-data’, Neurocomputing, 2018, 296, (28), pp. 100108.
    19. 19)
      • 19. Cheng, Y., Chen, K., Sun, H., et al: ‘Data and knowledge mining with big data towards smart production’, J. Ind. Inf. Integr., 2018, 9, pp. 113.
    20. 20)
      • 20. Heiss-Czedik, D.: ‘An introduction to genetic algorithms’, Sadhana, 2014, 3, (1), pp. 6365.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8276
Loading

Related content

content/journals/10.1049/joe.2018.8276
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address