http://iet.metastore.ingenta.com
1887

access icon openaccess Robust image registration of printed circuit boards using improved SIFT-PSO algorithm

  • XML
    78.994140625Kb
  • HTML
    93.095703125Kb
  • PDF
    4.782393455505371MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8274.html;jsessionid=96cu9660fon51.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8274&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Mashohor, S., Evans, J.R., Arslan, T.: ‘Image registration of printed circuit boards using hybrid genetic algorithm’. IEEE Int. Conf. Evolutionary Computation, Vancouver, Canada, July 2006, pp. 26852690.
    2. 2)
      • 2. Zitova, B., Flusser, J., Sroubek, F.: ‘Image registration: a survey and recent advances’. Proc. of the 12th IEEE Int. Conf. on Image Processing, Genoa, Italy, September 2005.
    3. 3)
      • 3. Gong, M., Zhao, S., Jiao, L., et al: ‘A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (7), pp. 43284338.
    4. 4)
      • 4. Li, Q., Wang, G., Liu, J., et al: ‘Robust scale-invariant feature matching for remote sensing image registration’, IEEE Geosci. Remote Sens. Lett., 2009, 6, (2), pp. 287291.
    5. 5)
      • 5. Senthilnath, J., Omkar, S.N., Mani, V., et al: ‘Accurate point matching based on multi-objective genetic algorithm for multi-sensor satellite imagery’, Appl. Math. Comput., 2014, 236, (2), pp. 546564.
    6. 6)
      • 6. Zhou, H., Yuan, Y., Shi, C.: ‘Object tracking using SIFT features and mean shift’, Comput. vis. image Underst., 2009, 113, (3), pp. 345352.
    7. 7)
      • 7. Wu, Y., Ma, W., Gong, M., et al: ‘a novel point-matching algorithm based on fast sample consensus for image registration’, IEEE Geosci. Remote Sens. Lett., 2017, 12, (1), pp. 4347.
    8. 8)
      • 8. Paul, S., Pati, U.C.: ‘Remote sensing optical image registration using modified uniform robust SIFT’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (9), pp. 13001304.
    9. 9)
      • 9. Ye, F., Su, Y., Xiao, H., et al: ‘Remote sensing image registration using convolutional neural network features’, IEEE Geosci. Remote Sens. Lett., 2018, PP, (99), pp. 15.
    10. 10)
      • 10. Saleem, S., Sablatnig, R.: ‘A robust SIFT descriptor for multispectral images’, IEEE Signal Process. Lett., 2014, 21, (4), pp. 400403.
    11. 11)
      • 11. Lowe, D.G.: ‘Object recognition from local scale-invariant features’. The Proc. Seventh IEEE Int. Conf. Computer Vision, Kerkyra, Greece, September 1999, pp. 11501157.
    12. 12)
      • 12. Xu, J., Wang, N., Wang, Y.: ‘Multi-pyramid image spatial structure based on coarse-to-fine pyramid and scale space’, CAAI Trans. Intell. Technol., 2018.
    13. 13)
      • 13. Mikolajczyk, K., Schmid, C.: ‘19-A performance evaluation of local descriptors. (SIFT the best)’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 16151630.
    14. 14)
      • 14. Particle swarm optimization’, https :// en.wikipedia.org /wiki/Particle _swarm _optimization, accessed 2 May 2018.
    15. 15)
      • 15. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. IEEE Int. Conf. Neural Networks, Perth, Australia, December 1995.
    16. 16)
      • 16. Ma, W., Wen, Z., Wu, Y., et al: ‘Remote sensing image registration with modified SIFT and enhanced feature matching’, IEEE Geosci. Remote Sens.Lett., 2016, 14, (1), pp. 37.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8274
Loading

Related content

content/journals/10.1049/joe.2018.8274
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address