http://iet.metastore.ingenta.com
1887

access icon openaccess CNN-based reference comparison method for classifying bare PCB defects

  • HTML
    68.455078125Kb
  • XML
    61.8037109375Kb
  • PDF
    2.5008020401000977MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8271.html;jsessionid=5mqk4dpldg07c.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8271&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Park, T.-H., Kim, H.-J.: ‘Path planning of automatic optical inspection machines for PCB assembly systems’. 2005 Int. Symp. Computational Intelligence in Robotics and Automation, Espoo, Finland, June 2005, pp. 249254.
    2. 2)
      • 2. Malamas, E.N., Petrakis, E.G.M., Zervakis, M., et al: ‘A survey on industrial vision systems, applications and tools’, Image Vis. Comput., 2003, 21, (2), pp. 171188.
    3. 3)
      • 3. Moganti, M., Ercal, F., Dagli, C.H., et al: ‘Automatic PCB inspection algorithms: a survey’, Comput. Vis. Image Underst., 1996, 63, (2), pp. 287313.
    4. 4)
      • 4. Wu, W.-Y., Wang, M.-J.J., Liu, C.-M.: ‘Automated inspection of printed circuit boards through machine vision’, Comput. Ind., 1996, 28, (2), pp. 103111.
    5. 5)
      • 5. Ibrahim, Z., Al-Attas, S.A.R., Aspar, Z., et al: ‘Performance evaluation of wavelet-based PCB defect detection and localization algorithm’. 2002 IEEE Int. Conf. Industrial Technology, (IEEE ICIT '02), Bangkok, Thailand, December 2002, vol. 1, pp. 226231.
    6. 6)
      • 6. Rau, H., Wu, C.H.: ‘Automatic optical inspection for detecting defects on printed circuit board inner layers’, Int. J. Adv. Manuf. Technol., 2005, 25, (9–10), pp. 940946.
    7. 7)
      • 7. Wang, W.-C., Chen, S.-L., Chen, L.-B., et al: ‘A machine vision based automatic optical inspection system for measuring drilling quality of printed circuit boards’, IEEE Access., 2017, 5, pp. 1081710833.
    8. 8)
      • 8. Chang, P.-C., Chen, L.-Y., Fan, C.-Y.: ‘A case-based evolutionary model for defect classification of printed circuit board images’, J. Intell. Manuf., 2008, 19, (2), pp. 203214.
    9. 9)
      • 9. Indera Putera, S.H., Ibrahim, Z.: ‘Printed circuit board defect detection using mathematical morphology and MATLAB image processing tools’. 2010 2nd Int. Conf. Education Technology and Computer, Shanghai, 2010, pp. V5-359V5-363.
    10. 10)
      • 10. Heriansyah, R., Bakar, S.A.R.S.A., Mun'im Ahmad Zabidi, M.: ‘Segmentation of PCB images into simple generic patterns using mathematical morphology and windowing technique’ (Universiti Teknologi, Malaysia, 2002).
    11. 11)
      • 11. Ibrahim, Z., Khalid, N.K.: ‘An image processing approach towards classification of defects on printed circuit board’, J. Neurochem., 2007, 60, (2), pp. 768771.
    12. 12)
      • 12. Zhang, B., Li, R., Peng, N.-C.: ‘The research of visual PCB defect inspection based of wavelet’, J. Syst. Simul., 2004, 16, (8), pp. 18641866.
    13. 13)
      • 13. Zhu, Z.-M., Lv, Z.-K., Song, R.-C., et al: ‘PCB solder joint quality inspection based on machine vision’, Control Eng. China, 2017, 27, (4), pp. 2025.
    14. 14)
      • 14. Li, Z.-M., Li, H., Sun, J.: ‘Detection of PCB based on digital image processing’, Instrum. Technique Sens., 2012, 61, (8), pp. 8789.
    15. 15)
      • 15. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266.
    16. 16)
      • 16. Navon, E., Miller, O., Averbuch, A.: ‘Color image segmentation based on adaptive local thresholds’, Image Vis. Comput., 2005, 23, (1), pp. 6985.
    17. 17)
      • 17. Bay, H., Tuytelaars, T., Van Gool, L.: ‘Surf: speeded up robust features’. European Conf. Computer Vision, Graz, Austria, May 2006, pp. 404417.
    18. 18)
      • 18. Hubel, D.H., Wiesel, T.N.: ‘Receptive fields, binocular interaction and functional architecture in the cat's visual cortex’, J. Physiol., 1962, 160, (1), pp. 106154.
    19. 19)
      • 19. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’, Adv. Neural Inf. Process. Syst., 2012, 1, pp. 10971105.
    20. 20)
      • 20. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.
    21. 21)
      • 21. Szegedy, C., Liu, W., Jia, Y.-Q., et al: ‘Going deeper with convolutions’. 2015 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 19.
    22. 22)
      • 22. He, K.-M., Zhang, X.-Y., Ren, S.-Q., et al: ‘Deep residual learning for image recognition’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Las Vegas, USA, June 2016, pp. 770778.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8271
Loading

Related content

content/journals/10.1049/joe.2018.8271
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address