http://iet.metastore.ingenta.com
1887

access icon openaccess Defect detection of PCB based on Bayes feature fusion

  • HTML
    83.2529296875Kb
  • PDF
    1.7364692687988281MB
  • XML
    63.162109375Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8270.html;jsessionid=e57xu6buf14.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8270&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Otsu, N.: ‘A threshold selection method from gray-level histograms’, IEEE Trans. Syst. Man Cybern., 1979, 9, (1), pp. 6266.
    2. 2)
      • 2. Ng, H.F.: ‘Automatic thresholding for defect detection’, Pattern Recognit. Lett., 2006, 27, (14), pp. 16441649.
    3. 3)
      • 3. Lijun, X.: ‘Research on target surface helium detection system based on machine vision’ (Hangzhou Dianzi University, Hangzhou, 2015).
    4. 4)
      • 4. Kumar, A., Pang, G.K.H.: ‘Defect detection in textured materials using Gabor filters’, IEEE Trans. Ind. Appl., 2002, 38, (2), pp. 425440.
    5. 5)
      • 5. Lafferty, J., McCallum, A., Pereira, F.C.N.: ‘Conditional random fields: probabilistic models for segmenting and labeling sequence data’, 2001.
    6. 6)
      • 6. Manning, C.D.: ‘Foundations of statistical natural language processing’ (The MIT Press, Cambridge, 1999).
    7. 7)
      • 7. Öztürk, Ş., Akdemir, B.: ‘Detection of PCB soldering defects using template based image processing method’, Int. J. Intel. Syst. Applic. Eng., 2017, 5, (4), pp. 269273.
    8. 8)
      • 8. Tukey, J.W.: ‘Exploratory data analysis’, 1977.
    9. 9)
      • 9. Bovik, A.C.: ‘Handbook of image and video processing’ (Elsevier Academic Press, London, 2010, 2nd edn.).
    10. 10)
      • 10. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    11. 11)
      • 11. Fang, Y., Luo, J., Lou, C.: ‘Fusion of multi-directional rotation invariant uniform LBP features for face recognition’. IEEE, 2009, pp. 332335.
    12. 12)
      • 12. Wu, M.L., Fahn, C.S., Chen, Y.F.: ‘Image-format-independent tampered image detection based on overlapping concurrent directional patterns and neural networks’, Appl. Intell., 2017, 47, (2), pp. 347361.
    13. 13)
      • 13. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. 2005 IEEE Computer Society Conf. on Computer Vision and Recognition (CVPR), San Diego, USA, June 2005, pp. 886893.
    14. 14)
      • 14. Newell, A.J., Griffin, L.D.: ‘Multiscale histogram of oriented gradient descriptors for robust character recognition’, IEEE Comput. Soc., 2011, pp. 10851089.
    15. 15)
      • 15. Wang, X., Han, T.X., Yan, S.: ‘An HOG-LBP human detector with partial occlusion handling’. 2009 IEEE 12th International Conf. on Computer Vision, Kyoto, Japan, 2009, pp. 3239.
    16. 16)
      • 16. Zhu, Q., Yeh, M.C., Cheng, K.T., et al: ‘Fast human detection using a cascade of histograms of oriented gradients’. 2006 IEEE Computer Society Conf. on Computer Vision and Recognition (CVPR), New York, USA, June 2006.
    17. 17)
      • 17. Llorca, D.F., Arroyo, R., Sotelo, M.A.: ‘Vehicle logo recognition in traffic images using HOG features and SVM’. IEEE, 2013, pp. 22292234.
    18. 18)
      • 18. Juang, B.H., Hou, W., Lee, C.H.: ‘Minimum classification error rate methods for speech recognition’, IEEE Trans. Speech Audio Process., 1997, 5, (3), pp. 257265.
    19. 19)
      • 19. Yang, J., Yang, J.Y., Zhang, D., et al: ‘Feature fusion: parallel strategy vs serial strategy’, Pattern Recognit., 2003, 36, (6), pp. 13691381.
    20. 20)
      • 20. ‘CSDN’: https://blog.csdn.net/wuye999/article/details/79152049, accessed 2 January 2018.5.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8270
Loading

Related content

content/journals/10.1049/joe.2018.8270
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address