http://iet.metastore.ingenta.com
1887

access icon openaccess Scene classification of remote sensing images based on hierarchical sparse coding

  • XML
    81.5068359375Kb
  • PDF
    4.201372146606445MB
  • HTML
    68.03125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8268.html;jsessionid=2gonsrkpqbcrk.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8268&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Yang, Y., Newsam, S.: ‘Spatial pyramid co-occurrence for image classification’. 2011 Int. Conf. on Computer Vision, Barcelona, Spain, November 2011, pp. 14651472.
    2. 2)
      • 2. Chen, S., Tian, Y.: ‘Pyramid of spatial relatons for scene-level land use classification’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (4), pp. 19471957.
    3. 3)
      • 3. Lienou, M., Maitre, H., Datcu, M.: ‘Semantic annotation of satellite images using latent Dirichlet allocation’, IEEE Geosci. Remote Sens. Lett., 2010, 7, (1), pp. 2832.
    4. 4)
      • 4. Cheng, G., Guo, L., Zhao, T., et al: ‘Automatic landslide detection from remote-sensing imagery using a scene classification method based on BOVW and PLSA’, Int. J. Remote Sens., 2013, 34, (1), pp. 4559.
    5. 5)
      • 5. Zhang, F., Du, B., Zhang, L.: ‘Saliency-guided unsupervised feature learning for scene classification’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (4), pp. 21752184.
    6. 6)
      • 6. Zhao, B., Zhong, Y., Xia, G.S., et al: ‘Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (4), pp. 21082122.
    7. 7)
      • 7. Zhao, B., Zhong, Y., Zhang, L.: ‘Scene classification via latent Dirichlet allocation using a hybrid generative/discriminative strategy for high spatial resolution remote sensing imagery’, Remote Sens. Lett., 2013, 4, (12), pp. 12041213.
    8. 8)
      • 8. Zhong, Y., Zhu, Q., Zhang, L.: ‘Scene classification based on the multifeature fusion probabilistic topic model for high spatial resolution remote sensing imagery’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (11), pp. 62076222.
    9. 9)
      • 9. Vaduva, C., Gavat, I., Datcu, M.: ‘Latent Dirichlet allocation for spatial analysis of satellite images’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (2013–05), pp. 27702786.
    10. 10)
      • 10. Cheriyadat, A.M.: ‘Unsupervised feature learning for aerial scene classification’, IEEE Trans. Geosci. Remote Sens., 2014, 52, (1), pp. 439451.
    11. 11)
      • 11. Zheng, X., Sun, X., Fu, K., et al: ‘Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint’, IEEE Geosci. Remote Sens. Lett., 2013, 10, (4), pp. 652656.
    12. 12)
      • 12. Cheng, G., Han, J., Guo, L., et al: ‘Effective and efficient midlevel visual elementsoriented land-use classification using VHR remote sensing images’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (8), pp. 42384249.
    13. 13)
      • 13. Qi, K., Zhang, X., Wu, B., et al: ‘Sparse coding-based correlaton model for land-use scene classification in high-resolution remote-sensing images’, J. Appl. Remote Sens., 2016, 10, (4), p. Art. ID 042005, doi: 10.1117/1.JRS.10.042005.
    14. 14)
      • 14. Bo, L., Ren, X., Fox, D.: ‘Hierarchical matching pursuit for image classification: architecture and fast algorithms’. NIPS'11 Proceedings of the 24th Int. Conf. on Neural Inf. Process. Syst., Granada, Spain, December 2011, pp. 21152123.
    15. 15)
      • 15. Aharon, M., Elad, M., Bruckstein, A.: ‘K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation’, IEEE Trans. Signal Process., 2006, 54, (11), pp. 43114322.
    16. 16)
      • 16. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: ‘Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition’. Proc. of 27th Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, USA, November 1993, pp. 4044.
    17. 17)
      • 17. Yang, Y., Newsam, S.: ‘Bag-of-visual-words and spatial extensions for land-use classification’. Proc. ACM GIS, 2010, pp. 270279.
    18. 18)
      • 18. Romero, A., Gatta, C., Camps-Valls, G.: ‘Unsupervised deep feature extraction for remote sensing image classification’, IEEE Trans. Geosci. Remote Sens., 2016, 54, (3), pp. 13491362.
    19. 19)
      • 19. Li, Y., Tao, C., Tan, Y., et al: ‘Unsupervised multilayer feature learning for satellite image scene classification’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (2), pp. 157161.
    20. 20)
      • 20. Zhong, Y., Fei, F., Zhang, L.: ‘Large patch convolutional neural networks for the scene classification of high spatial resolution imagery’, J. Appl. Remote Sens., 2016, 10, (2), p. Art. ID 025006, doi: 10.1117/1.JRS.10.025006.
    21. 21)
      • 21. Wu, H., Liu, B., Su, W., et al: ‘Hierarchical coding vectors for scene level land-use classification’, Remote Sens., 2016, 8, (5), p. Art. ID 436, doi: 10.3390/rs8050436.
    22. 22)
      • 22. Gan, J., Li, Q., Zhang, Z., et al: ‘Two-level feature representation for aerial scene classification’, IEEE Geosci. Remote Sens. Lett., 2016, 13, (11), pp. 16261630.
    23. 23)
      • 23. Zhao, L., Tang, P., Huo, L.: ‘A 2-D wavelet decomposition-based bag-of-visual-words model for land-use scene classification’, Int. J. Remote Sens., 2014, 35, (6), pp. 22962310.
    24. 24)
      • 24. Xiao, Y., Wu, J., Yuan, J.: ‘mCENTRIST: a multi-channel feature generation mechanism for scene categorization’, IEEE Trans. Image Process., 2014, 23, (2), pp. 823836.
    25. 25)
      • 25. Cheng, G., Han, J., Zhou, P., et al: ‘Multi-class geospatial object detection and geographic image classification based on collection of part detectors’, ISPRS J. Photogramm. Remote Sens., 2014, 98, pp. 119132.
    26. 26)
      • 26. Cvetkovic, S., Stojanovic, M.B., Nikolic, S.V.: ‘Multi-channel descriptors and ensemble of extreme learning machines for classification of remote sensing images’, Signal Process., Image Commun., 2015, 39, (11), pp. 111120.
    27. 27)
      • 27. Cui, S., Schwarz, G., Datcu, M.: ‘Remote sensing image classification: no features, no clustering’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (11), pp. 51585170.
    28. 28)
      • 28. Hu, F., Xia, G.S., Wang, Z., et al: ‘Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (5), pp. 20152030.
    29. 29)
      • 29. Liu, Y., Zhang, Y., Zhang, X., et al: ‘Adaptive spatial pooling for image classification’, Pattern Recognit., 2016, 55, pp. 5867.
    30. 30)
      • 30. Chen, C., Zhang, B., Su, H., et al: ‘Land-use scene classification using multi-scale completed local binary patterns’, Signal. Image. Video. Process., 2016, 10, (4), pp. 745752.
    31. 31)
      • 31. Hu, F., Xia, G., Hu, J., et al: ‘Fast binary coding for the scene classification of high-resolution remote sensing imagery’, Remote Sens., 2016, 8, p. Art. ID 555, doi: 10.3390/rs8070555.
    32. 32)
      • 32. Yang, C., Liu, H., Wang, S., et al: ‘Scene-level geographic image classification based on a covariance descriptor using supervised collaborative kernel coding’, Sensors, 2016, 16, p. Art. ID 392, doi: 10.3390/s16030392.
    33. 33)
      • 33. Maree, R., Geurts, P., Wehenkel, L.: ‘Towards generic image classification using treebased learning: an extensive empirical study’, Pattern Recognit. Lett., 2016, 74, pp. 1723.
    34. 34)
      • 34. Zhang, J., Li, T., Lu, X., et al: ‘Semantic classification of high-resolution remote-sensing images based on mid-level features’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2016, 9, (6), pp. 23432353.
    35. 35)
      • 35. Shao, W., Yang, W., Xia, G., et al: ‘A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization’. Proc. Int. Conf. on Computer Vision Systems, St. Petersburg, Russia, July 2013, pp. 324333.
    36. 36)
      • 36. Sheng, G., Yang, W., Xu, T., et al: ‘High-resolution satellite scene classification using a sparse coding based multiple feature combination’, Int. J. Remote Sens., 2012, 33, (8), pp. 23952412.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8268
Loading

Related content

content/journals/10.1049/joe.2018.8268
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address