http://iet.metastore.ingenta.com
1887

access icon openaccess Application of stack marginalised sparse denoising auto-encoder in fault diagnosis of rolling bearing

  • PDF
    2.1206626892089844MB
  • XML
    91.216796875Kb
  • HTML
    110.3125Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/16/JOE.2018.8267.html;jsessionid=1qcqr1rurdpq5.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8267&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Patel, V.N., Tandon, N., Pandey, R.K.: ‘Vibrations generated by rolling element bearings having multiple local defects on races ⋆’, Procedia Technol., 2014, 14, pp. 312319.
    2. 2)
      • 2. Humphrey, E.J., Bello, J.P., Lecun, Y.: ‘Feature learning and deep architectures: new directions for music informatics’, J. Intell. Inf. Syst., 2013, 41, (3), pp. 461481.
    3. 3)
      • 3. Ali, H.A., Sai Ho, L., Mohammed, H.J.: ‘Diagnosis system for Parkinson's disease using speech characteristics of patients and deep belief network’, CAAI Trans. Intell. Technol., 2017, 2, (4), pp. 246253.
    4. 4)
      • 4. Cao, Y.: ‘Intelligent recommendation system based on neural network and fuzzy logic’ (Chongqing University, Chongqing, 2006) (in Chinese).
    5. 5)
      • 5. Yu, K., Jia, L., Chen, Y., et al: ‘Deep learning, yesterday, today and tomorrow’, J. Comput. Res. Dev., 2013, 50, (9), pp. 17991804(in Chinese).
    6. 6)
      • 6. Tang, F., Long, H.: ‘Sparse auto-coded deep neural network and its application in fault diagnosis of rolling bearings’, J. Mech. Eng. Tech., 2018, (3). (in Chinese).
    7. 7)
      • 7. Chen, R., Yang, X., Yang, L., et al: ‘Diagnosis of rolling bearing damage degree based on stacked sparse and noise auto-encoding deep neural network’, J. Vib. Shock, 2017, 36, (21), pp. 125131. (in Chinese).
    8. 8)
      • 8. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: ‘Learning representations by back-propagating errors’ in ‘Neurocomputing: foundations of research’ (MIT Press, 1988), pp. 533536.
    9. 9)
      • 9. Lecun, Y., Bottou, L., Orr, G.B., et al: ‘Efficient BackProp’ in ‘Neural networks: tricks of the trade’ (Springer, Berlin, Heidelberg, 1998), pp. 950.
    10. 10)
      • 10. Sun, W., Shao, S., Yan, R.: ‘Induction motor fault diagnosis based on sparse automatic coded deep neural network’, J. Mech. Eng., 2016, 52, (9), pp. 6571. (in Chinese).
    11. 11)
      • 11. Mnih, V., Kavukcuoglu, K., Silver, D., et al: ‘Playing atari with deep reinforcement learning’, Comput. Sci., 2013, arXiv preprint arXiv: 1312.5602.
    12. 12)
      • 12. Yin, H., Jiao, X., Chai, Y., et al: ‘Scene classification based on single-layer SAE and SVM’, Expert Syst. Appl., 2015, 42, (7), pp. 33683380.
    13. 13)
      • 13. Ma, H., Ma, S., Xu, Y., et al: ‘Image denoising based on improved stacked sparse denoising auto-encoder’, Comput. Eng. Applic., 2018, (4), pp. 199204(in Chinese).
    14. 14)
      • 14. Yuan, K., Ling, Q., Yin, W.: ‘On the convergence of decentralized gradient descent’, Mathematics, 2016, 26, (3), pp. 18351854.
    15. 15)
      • 15. Cheriyadat, A.M.: ‘Unsupervised feature learning for aerial scene classification’, IEEE Trans. Geosci. Remote Sens., 2013, 52, (1), pp. 439451.
    16. 16)
      • 16. Chen, M., Weinberger, K., Sha, F., et al: ‘Marginalized denoising auto-encoders for nonlinear representations’. Int. Conf. on Machine Learning, Beijing, China, June 2014, pp. 14761484.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8267
Loading

Related content

content/journals/10.1049/joe.2018.8267
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address