http://iet.metastore.ingenta.com
1887

access icon openaccess Mining the underlying relation network based on the communication actions

  • PDF
    1.7082939147949219MB
  • XML
    84.701171875Kb
  • HTML
    118.427734375Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.5201/JOE.2018.5201.html;jsessionid=2rbgpptmpgkic.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.5201&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Katz, E., Lazarsfeld, P.F., Roper, E.: ‘Personal influence: the part played by people in the flow of mass communications’ (Routledge, London, UK, 2017).
    2. 2)
      • 2. Rogers, E.M.: ‘Diffusion of innovations’ (Simon and Schuster, London, UK, 2010).
    3. 3)
      • 3. Watts, D.J., Dodds, P.S.: ‘Influentials, networks, and public opinion formation’, J. Consum. Res., 2007, 34, (4), pp. 441458.
    4. 4)
      • 4. Adar, E., Adamic, L.A.: ‘Tracking information epidemics in blogspace’. Proc. 2005 IEEE/WIC/ACM Int. Conf. Web Intelligence, 2005.
    5. 5)
      • 5. Leskovec, J., McGlohon, M., Faloutsos, C., et al: ‘Patterns of cascading behavior in large blog graphs’. Proc. 2007 SIAM Int. Conf. Data Mining, 2007.
    6. 6)
      • 6. Leskovec, J., Singh, A., Kleinberg, J.: ‘Patterns of influence in a recommendation network’. Pacific-Asia Conf. Knowledge Discovery and Data Mining, 2006.
    7. 7)
      • 7. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: ‘Inferring networks of diffusion and influence’, ACM Trans. Knowl. Discov. Data (TKDD), 2012, 5, (4), p. 21.
    8. 8)
      • 8. Gu, G., Perdisci, R., Zhang, J., et al: ‘Botminer: clustering analysis of network traffic for protocol- and structure-independent botnet detection’. USENIX Security Symp., 2008, vol.5, no.2.
    9. 9)
      • 9. Barabasi, A.-L.: ‘The origin of bursts and heavy tails in human dynamics’, Nature, 2005, 435, (7039), p. 207.
    10. 10)
      • 10. Malmgren, R.D., Stouffer, D.B., Motter, A.E., et al: ‘A Poissonian explanation for heavy tails in e-mail communication’, Proc. Natl. Acad. Sci., 2008, 105, (47), pp. 1815318158.
    11. 11)
      • 11. Khuller, S., Moss, A., Naor, J.S.: ‘The budgeted maximum coverage problem’, Inf. Process. Lett., 1999, 70, (1), pp. 3945.
    12. 12)
      • 12. Leskovec, J., Lang, K.J., Dasgupta, A., et al: ‘Statistical properties of community structure in large social and information networks’. Proc. 17th Int. Conf. World Wide Web, 2008.
    13. 13)
      • 13. Leskovec, J., Faloutsos, C.: ‘Scalable modeling of real graphs using Kronecker multiplication’. Proc. 24th Int. Conf. Machine Learning, 2007.
    14. 14)
      • 14. Erds, P., Rényi, A.: ‘On the evolution of random graphs’, Publ. Math. Inst. Hungarian Acad. Sci., 1960, 5, pp. 1761.
    15. 15)
      • 15. Clauset, A., Moore, C., Newman, M.E.J.: ‘Hierarchical structure and the prediction of missing links in networks’, Nature, 2008, 453, (7191), p. 98.
    16. 16)
      • 16. Grover, A., Zweig, A., Ermon, S.: ‘Graphite: iterative generative modeling of graphs’. arXiv preprint arXiv:1803.10459, 2018.
    17. 17)
      • 17. Altenburger, K.M., Ugander, J.: ‘Monophily in social networks introduces similarity among friends-of-friends’, Nat. Hum. Behav., 2018, 2, (4), p. 284.
    18. 18)
      • 18. Yang, M., Hsu, W.H., Kallumadi, S.T.: ‘Predictive analytics of social networks: a survey of tasks and techniques’. Social Media Marketing: Breakthroughs in Research and Practice, 2018, pp. 823862.
    19. 19)
      • 19. Shetty, J., Adibi, J.: ‘The Enron email dataset database schema and brief statistical report’. Information Sciences Institute Technical Report, University of Southern California, 2004, vol. 4, no.1, pp. 120128.
    20. 20)
      • 20. Cohen, W.W.: ‘Enron email dataset’, 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.5201
Loading

Related content

content/journals/10.1049/joe.2018.5201
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address